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ABSTRACT 

GMV has recently developed a new Flight Dynamics 

(FD) and geodesy library called MAORI, written in 

modern C++17 and Python 3 from scratch. This library 

supports several projects led by GMV, including the 

operational provision of Precise Orbit Determination 

(POD) products of the Copernicus Sentinel satellites in 

the frame of the Copernicus POD (CPOD) Service, the 

simulation of tracking data for Galileo 2nd Generation 

(G2G) System Test Bed, or the maintenance of a 

catalogue of orbit debris. 

The architecture of MAORI has been designed 

following four basic principles: i) to develop a library, 

rather than a collection of programs, ii) to split data from 

algorithms, to enhance the reusability of data among 

different algorithms, iii) to incorporate a clear data 

model that represents the physical meaning (e.g., 

satellites, stations, instruments, observations, etc.) and 

the relationships of the data and iv) to allow multiple use 

cases: C++ binaries, Python´s wrappers, HMI, micro-

services, etc. 

On top of these principles, there are two main 

requirements that drove the development of MAORI: 

i) to achieve the state-of-the-art accuracy, in terms of 

modelling and estimation, and ii) to improve the 

performance (i.e., processing time and memory usage) 

as compared to similar SW, like NAPEOS. These two 

requirements, together with the innovative design, were 

addressed with an agile methodology, where capabilities 

were added incrementally, paying special attention to 

achieving high performance and accuracy. The design of 

each algorithm, and the data model was optimized to 

save processing time and memory. For instance, the use 

of buffers, or ad-hoc mechanisms to make use of multi-

threading wherever was needed.  

Finally, the architecture of the library, and each 

algorithm, takes advantage of the capabilities of C++, 

like OOP, polymorphism, templates, Standard Template 

Library (STL), etc. 

Currently, the library is capable of supporting the most 

relevant FD capabilities: orbit propagation (complex 

numerical propagator, analytical propagators…), orbit 

determination (based on GNSS, radar, optical, passive 

ranging, Satellite Laser Ranging…), manoeuvre 

handling, event calculation, attitude handling, 

observation simulation, etc. The development of the 

library continues in several fronts: POD and geodesy, 

flight dynamics (including interplanetary), space traffic 

management, mission analysis and simulation. 

This contribution will present the key aspects of the 

design of MAORI that have contributed to its success, 

focusing on the notion of library, the data model, its 

performance, and accuracy. The use of MAORI to 

develop FocusPOD, an operational POD application for 

the Copernicus POD Service, will be shown as an 

example of operational use. The roadmap of MAORI 

will also be summarized. 

I. INTRODUCTION 

MAORI (Multipurpose Advance Orbit Restitution 

Infrastructure) is a Flight Dynamics (FD) and geodesy 

library written in modern C++17 and Python 3, 

developed by GMV from scratch as part of an internal 

research and development (R&D) activity. The library 

has been designed and implemented with the goal to 

support several projects that require astrodynamics 

capabilities (handling of ephemerides, propagation, 

events calculation…) and parameter estimation (orbit 

determination, geodesy…). It combines the great 

technical knowledge in the field acquired by GMV over 

the years with different projects, and modern 

technologies that are more compatible with today’s 

programming paradigms and IT specifications. The 

projects that MAORI currently supports include: 

- Copernicus POD Service: operational provision of 

orbital and auxiliary precise products to ESA and 

EUMETSAT for the Copernicus Sentinel satellites 

[2]. Seamless operational transition from NAPEOS 

to a solution based on MAORI in January 2023, 

keeping the same state-of-the-art accuracy 

standards and improving the timeliness of the near-

real time products thanks to the new software. Both 

GNSS (GPS+GAL) and SLR are routinely 

processed as part of the service. 

- Tracking simulator for Galileo 2nd Generation 

(G2G) System Test Bed: the new G2G system test 

bed will count with a tool developed in Python, and 

using MAORI, to generate realistic tracking of 

GNSS observations from GNSS sensor ground 

stations, SLR data from ground telescopes, and ISL 

between the future Galileo satellites. 

- Quality control for LEO-PNT: the consortium led 

by GMV in LEO-PNT, the new constellation of 

European GNSS emitters in LEO regime, will also 

make use of a solution based on MAORI to perform 

offline quality control in post-processing of the 

broadcast ephemerides. 

- Support to Space Situational Awareness (SSA) 

activities: COTS developed by GMV based on 

MAORI are also routinely used in other projects to 

perform cataloguing activities, association (track-

to-orbit, orbit-to-orbit, track-to-track) and 
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covariance analysis. 

II. DESIGN PRINCIPLES 

The library has been designed following four basic 

principles, depicted in Fig. 1: 

- The focus is to develop a library, rather than a 

collection of programs. This means that all the 

functionality in the library is as generic as possible, 

without focusing on one particular use-case, and 

allowing a great level of user-interaction to decide 

how to build their applications. This is key to fulfil 

the requirement to support a variety of projects that 

require different architectures and technologies, 

always keeping flexibility and generality in mind 

during the development. The programs can then be 

easily built using MAORI as a dependency with 

clear interfaces, both for entry-points (inputs & 

configuration) and results (outputs). 

- The data shall be kept clearly separated from 

algorithms. This principle means that modules 

within the library should work with clearly 

documented data that is not part of the algorithm 

itself; the algorithm should only concern with the 

calculations. This is a must when trying to fulfil the 

previous design principle, as being flexible means 

that the algorithms do not take the responsibility to 

acquire the data, organise it, or post-process it in 

any hard-coded way. Instead, the algorithms work 

with data that is already organised. 

- Data shall be organised in a clear, relational data 

model that represents reality as faithfully as 

possible. This means, e.g., that the data model 

includes physical entities such as satellites, stations, 

instruments, oscillators, or antennas. This principle 

comes naturally from the previous one, since the 

algorithms are required to work with previously 

organised, common data; it is the library’s duty to 

ingest, organise, and circulate this data around the 

different algorithms as the user requires. Moreover, 

this also helps greatly when supporting different 

projects as the captured reality is the same, even 

though the particular data structures for a given 

project may be particular. More information on the 

data model is provided later on. 

- Multiple use cases shall be supported. This 

principle means that the library’s flexibility is to be 

exploited by allowing to build applications in many 

different ways: as a stand-alone end-to-end C++ 

program, as a collection of instructions that can be 

chained by a script, as a service exposed in an 

HTTPS server via an API, or by making use of the 

Python bindings in a Jupyter Notebook, to name a 

few examples. More information on bindings is 

provided in a subsequent dedicated section. 

 

 

Fig. 1. MAORI design principles. 

A. Library oriented 

MAORI is a library, not a collection of programs. 

However, the library already contains high-level 

functionalities, like complex orbital propagation, 

measurement reconstruction or parameter estimation.  

The design of the library tries to be as general as possible 

to allow using the same general algorithms for multiple 

purposes. 

The library contains the following high-level elements: 

- Clocks: It contains mostly data classes to store 

clock biases in support of GNSS/DORIS 

processing. It also contains the logical entities 

related to clock processing (such as the oscillator). 

- Contributions: It contains the algorithms for the 

calculation of dynamic perturbations used in 

numerical propagation, and the related geophysical 

models (such as MSISE, EGM…) and their 

associated data classes for storage of model data. 

- Covariance: It contains data classes to support the 

storage and operations with covariance matrices. 

- Events: It contains the algorithms for the 

calculation of events, including the root finding 

algorithm, and the definition of event functions 

grouped per category (satellite-related, station-

related…). 

- Estimation: It contains the algorithms required to 

estimate parameters, in particular the Batch Least 

Squares estimator and Extended Kalman Filter. 

Some auxiliary data classes are also used in support 

of the estimation. 

- Frames: It contains the algorithms required to 

perform frame transformation, mostly focusing on 

inertial to Earth-fixed conversions based on SOFA 

external library. 

- IOD: It contains algorithms which perform Initial 

Orbit Determination (IOD).  

- Logging: Auxiliary module with some basic 

functionality related to logging based on spdlog 

external library. 

- Math: It contains some generic mathematical 

algorithms such as interpolation, Legendre 

polynomial functions, etc. 

- Models: It contains common algorithms for 

geophysical models considered by different 

elements of the library, such as geopotentials, tides, 
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ocean loading, troposphere, and ionosphere, among 

others. 

- Observations: It contains both the data classes that 

support the storage of observations in the library 

(such as the logical entities of Instrument, Link, 

ObsType…) and the algorithms to work with them, 

including pre-processing and reconstruction. 

- Orbit: It contains the data classes that store 

satellites, orbits and state vectors in generic 

representations, as well as some algorithms such as 

the calculation of planetary ephemerides (based on 

calceph external library). 

- Orientation: It contains the data classes that 

support attitude and pointing as a wrapper to the 

external class Eigen::quaternion, as well as 

the attitude simulation algorithm. 

- Parameters: It contains classes that support 

auxiliary functionality related to parameters that 

can be estimated by the estimation module. 

- Persistence: It contains the algorithms required to 

read data from external entities (files, DBs…) into 

the library, and also to export data from the library 

to an external medium. 

- Propagation: It contains the algorithms to perform 

propagation of a state vector. It includes different 

types of propagators, such as numerical, Keplerian, 

SGP4, etc.  

- Scenario: It contains the Scenario, which is the data 

class that represents the data model. It is mainly 

used to organise access to the central information 

and to enforce the relationships between logical 

entities in the data model. 

- Station: It contains data classes to support both 

stations as logical entities and coordinates. 

- Time: It contains data classes such as the Epoch and 

the algorithms required to work with time (parse 

epochs, time conversions…). 

- Utils: Generic utility classes mostly related to C++ 

(streams utils, string utils…). It also contains the 

exception types defined for the library. 

 

B. Data vs. algorithms 

With MAORI, it was decided that data will have a 

central role. The goal of supporting multiple 

applications requires to adopt the strategy that considers 

the most demanding in terms of data, which are geodesy, 

space traffic management and mega-constellations.  

To allow re-using the same algorithms, or data, for 

different applications requires to split them by design. 

Data was organized within a data model (see next sub-

section), and algorithms were designed to make use of 

this data model using ad-hoc APIs and restricting the 

changes over the central data. 

 

C. Data model 

The notion of data is key in the MAORI design. This is 

so because the philosophy of the library revolves around 

how the data is used, what physical reality it represents, 

how it relates to other entities, and what volume it may 

acquire in terms of performance and ease of use. For 

these reasons, the data model in MAORI has been 

carefully designed to: 

1. Represent the physical reality of the data. 

2. Provide simplified access to this data to the 

different algorithms and users. 

3. Scale adequately in terms of number of elements 

(e.g. keeping in mind high-rate observations, or mega-

constellations). 

 

The adopted solution tries to mimic a relational DB, in 

the sense that each component (e.g. a satellite, an 

instrument) is related to each other using a unique 

mechanism, which is based on keys (identifiers). 

Programmatically, there are different versions tailored 

for specific needs that offer a common interface across 

the library: the basic one is implemented using a C++ 

std::map container, which uses as key a unique 

identifier (whose implementation depends on the entity 

being stored), and an index representing the last 

accessed element, based on the principle that data is 

typically used in an orderly fashion. Other specialization 

is available for data which require interpolation based on 

std::vector of pairs to benefit from contiguous 

memory allocation, ideal for intensive access.  These 

containers are referred to as tables in the library. All 

specializations of tables allow keeping large volumes of 

data, and provide efficient search algorithms, which are 

enhanced keeping the location of the last accessed 

element, which is useful for time-series.  

 

The data model is represented by a class called 

Scenario, which contains all the different tables and 

handles the access to the data by providing pointers and 

taking care of the life cycle of the objects in memory. 

The Scenario is not a singleton by design (i.e., several 

Scenarios with independent data can coexist). This has 

been done so to ensure an easy means of parallelization, 

albeit not ideal in terms of data duplicity. 

 

Within the library, conceptually, we can distinguish two 

types of tables: 

- Logical Entities, which represent physical (i.e., 

real) entities, like a satellite, or a station. 

- Physical Data, which represent elements like 

orbits, clocks, or attitude. 

The main reason of this separation is that while both are 

located on tables, the logical entities do not have the 

concept of interpolation, while there is with the physical 

data. For instance, it is possible to interpolate clocks, 

orbits, attitude, etc., but it is hardly seen how a table of 

satellites could be interpolated. 

The Logical Entities are composed by: Satellite, Station, 

Instrument, Oscillator and Antenna. It would be possible 

to even consider Oscillator and Antenna as Instrument, 

but the separation is done because Oscillator and 
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Antennas do not generate observables, while 

Instruments do. Fig. 2 shows the relationship between 

the Logical Entities. 

 

 

 

Fig. 2. Relationship between Logical Entities. 

It can be seen that: 

- There could be several instruments on each satellite 

or station. For instance, a GNSS, DORIS and S-

band receivers. 

- The instruments could have [0, 1 …] antennas, to 

cover cases like: 

o None: e.g., an accelerometer does not use an 

antenna. 

o One: e.g., a ground station on S-band with one 

antenna. 

o Several: e.g., an on-board GNSS receiver 

connected to two antennas on opposite sides of 

the satellite. 

- Oscillators can provide the signal to several 

instruments, which is typically the case on-board 

and on ground stations. For example, in Sentinel-3 

or Sentinel-6 mission, there is an Ultra Stable 

Oscillator (USO) that provides a signal to the GNSS 

and DORIS receivers. 

The Physical Data can have relationships with the 

Logical Entities (e.g. orbits), or not (e.g. the EOPs). Fig. 

3 shows some of the relationship between the Logical 

Entities (in red) and some of the most usual Physical 

Data (in grey).  

 

 

Fig. 3. Relationship between some Logical Entities 
and Physical Data. 

It can be seen: 

- A satellite can have [0, 1 …] Orbits, Attitude, 

Covariance and State-Vectors. It is clarified that 

even if Orbits are composed of state-vectors, a 

separation is done to support specific applications 

where single state-vectors are needed. Having 

several orbits associated to a single satellite (and the 

same happens with the other physical data), is 

useful, for instance, to perform comparisons 

between them. 

- An antenna can have [0, 1 …] Pointing describing 

its orientation in time. Typically, it will be just one. 

- A station can have [0, 1 …] Coordinates describing 

its evolution in time. Typically, it will be just one. 

- Finally, an oscillator will have [0, 1 …] Clocks. 

This is useful to perform clock comparisons, but 

also to support advance applications where different 

clocks realizations are done of the same oscillator, 

depending on the GNSS signals used. 

 

Although many more elements are present in the library, 

the Observations layer is showed in Fig. 4 as an 

example.  

 

 

Fig. 4. Relationship between Logical Entities and 
Observations organisation. 

It can be seen that: 

- A Link is basically the concept that established the 

relationship between the different instruments that 

create an observable. Link is a virtual class, with 

several derived classes that can be: 
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o XYZ, which in this case just refers to the centre 

of mass of a satellite, or the location of a 

particular instrument on-board (e.g., the GNSS 

antenna).  

o One way and two-way links, which include the 

instruments involved on the satellite/s and the 

ground station/s. 

o Four ways, on which there can be up to four 

instruments involved (e.g., GNSS double 

differences). 

- The ObsType is the virtual class that represents the 

type of observable. Its derived classes can be: 

o GNSS Pseudo-range, Carrier-phase. 

o XYZ. 

o SLR. 

o DORIS. 

o Optical. 

o Radar. 

o Passive ranging. 

- Observations and Ambiguities are related with the 

Link (to get information about the instruments 

involved), and ObsType (to know the type of 

observation). The main difference between both is 

that Observations are typically epoch-based, while 

(GNSS phase) Ambiguities are interval-based (per 

pass). 

- SignalBiases represents the instrumental delays, 

and therefore, it is associated to the Instrument. 

The central data model is key to the design of MAORI 

and has helped achieved the challenges posed by the 

demanding requirements of the library. 

 

D. Use cases 

The design of MAORI aims to support different use 

cases, understood as different ways of generating 

applications or using the library. Following are just 

some examples: 

- C++ binaries: to construct a C++ program that 

performs specific tasks as configured. Examples are 

a propagator, an orbit determination, an orbit 

comparison tool, etc. 

- Python binding: to construct Python scripts, which 

perform specific tasks by calling to the C++ library. 

Indeed, the same C++ binaries described in the 

previous bullet can also be constructed with Python 

scripts (not compiled), with minimum 

computational penalty meanwhile there is not much 

data transfer between the C++ and Python layers. 

- Service / micro-services: to construct applications 

using a service or micro-services principles. They 

could be constructed using any of the above-

mentioned architectures. 

- Service / client architecture. 

 

 

III. HIGH LEVEL REQUIREMENTS 

On top of the mentioned design principles, there are two 

main requirements that drove the development of 

MAORI: 

1. To achieve the state-of-the-art accuracy, in terms 

of modelling and estimation. 
2. To improve the performance (i.e., processing 

runtime and memory/CPU usage) as compared to 

similar SW suites.  

These two requirements, together with the innovative 

design, were addressed with an agile methodology, 

where capabilities were added incrementally, paying 

special attention to achieving high performance and 

accuracy in each of the steps of the way. The design of 

each algorithm, and the data model was optimized to 

save processing time and memory. For instance, by 

using buffers of previously computed calculations, or 

ad-hoc mechanisms to exploit multi-threading wherever 

was needed. 

 

An example of this process of development is the 

inclusion of a relational data model in the library based 

on the C++ Standard Template Library (STL): in a first 

attempt, several implementations were added (e.g. based 

on an indexed vector, based on a map using IDs as 

key, based on linked lists…). When the different 

options were implemented, they were tested in a 

benchmark to select which was the option that satisfied 

better the different use cases in terms of addition, 

retrieval, and erasure, considering various orders of 

magnitude of expected elements (e.g. number of 

potential satellites vs. number of potential observations). 

Out of this process, a final solution based on the C++ 

std::map with an indexed access was chosen. Later 

on, in order to improve access performance, the 

std::vector was implemented too while keeping a 

common, transparent interfaces across the library. 

 

The added value of the agile methodology together with 

the careful implementation and benchmarking of all 

low-level elements allowed that once the more complex 

algorithms were available (e.g. to carry out a full end-to-

end orbit determination, including observation 

decoding, preprocessing, initial solution computation 

and iterative batch estimation, with multiple 

propagations and measurement reconstructions), there 

was low risk of not meeting these two requirements in 

terms of accuracy and performance. Available results of 

some of the algorithms are included in the following 

subsections. 

IV. TECHNOLOGIES 

MAORI core library is written in C++ following the 

C++17 standards; it makes extensive use of the C++ 

Standard Template Library (STL) and open-source 

dependencies for all duties that are not part of the 
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business logic of the application (i.e. astrodynamics and 

geodesy). The list of dependencies is summarized in 

Tab. 1. 

 

Table 1. External dependencies of MAORI 

Name Description 

SOFA Standard models used in 

fundamental astronomy, based on 

IERS Conventions. 

SGP4 SGP4 propagator for TLEs. 

IERS2010 Set of routines that extend the IERS 

2010 conventions. 

Calceph Access the binary planetary 

ephemeris files, such INPOPxx, JPL 

DExxx and SPICE ephemeris files. 

NRLMSISE-00 NRLMSIS 00 Atmosphere Model. 

Nequick-G Algorithm to correct for ionospheric 

delays based on an adaptation of the 

three-dimensional NeQuick electron 

density model. 

Eigen Template library for linear algebra: 

matrices, vectors, numerical solvers, 

and related algorithms. 

YAMLCpp A YAML parser and emitter. 

FMT Modern formatting library. 

SPDLog Fast C++ logging library. 

Xerces-c Validating XML parser. 

bxzstr Access to compressed streams. 

Thread-pool Thread Pool for parallel processing. 

Pybind11 Python binding library. 

Pagmo Optimization algorithms. 

 

In order to exploit the flexibility granted by Python and 

the powerful libraries available in that language (e.g., for 

data visualisation or to apply machine learning), 

MAORI exposes a set of Python bindings to the most 

relevant functionality of the library so that it can be 

transparently used from Python. This version is called 

pymaori, although it conceptually represents the same 

library as the C++ core version. 

 

 
Fig. 5. Data flow between C++ (library layer), 

Python binding (pymaori) and Python app. 

The interaction between the C++ layer and the Python 

layer is shown in Fig. 5, where also the exploit of the 

data model is shown. In this diagram, the data is read 

using the providers and ingested into data model (within 

the C++ classes), where it is organised, then the driving 

algorithm (in Python) calls the required algorithms to 

carry out the business logic. Finally, the obtained results 

(data) can be handled in C++ or in Python directly to 

exploit it (e.g. in Grafana, or in a notebook).  

 

 

Fig. 6. Example of Python code making use of 
MAORI bindings (marked in red). 

In order to show the look and feel of this concept, Fig. 6 

shows an example of the seamless usage of MAORI 

from a Python environment, in this case a Jupyter 

Notebook exploiting visualisation in 3D. 

 

V. CAPABILITIES 

The capabilities of MAORI include, inter alia, the 

following elements: 

- Implementation of the most common international 

formats in FD, POD, and geodesy, including 

observation and navigation RINEX v3 and v4, 

SP3c/d, Clock RINEX, SINEX, ESA EOF, 

Geopotentials, EOPs, leap seconds, RSGA (solar 

activity), atmospheric gravity, among others. 

- Frame of reference transformations making use of 

the latest IERS conventions (2010), focusing on 

transformations between Earth-fixed (ITRF) and 

inertial (GCRF). Intermediate frames and different 

IERS conventions are used for specific algorithms, 

such as TEME for TLE propagation. 

- Handling of different time scales including TAI, 

UTC, UT1 and various GNSS time systems such as 

GPS and Galileo reference time. Internally, 

MAORI uses TAI. 

- Handling of different satellites’ attitude, including 

interpolation of real attitude data or simulation 

following a number of available theoretical laws 

(including the GNSS satellites). More attitude laws 

can be readily added by extending the current basic 

pointing laws, which include geocentric and 
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geodetic modes based on different ellipsoids, Sun-

pointing, orbital pointing… 

- Most common interpolation algorithms for orbits, 

attitude, clock biases, EOPs… 

- Event calculation, including visibility from 

sensors at orbiting platforms and stations, third 

body eclipses… 

- Merging algorithms for orbits and clocks, and 

geophysical data such as the EOPs or solar activity 

data which allow to easily combine different inputs 

while keeping the expected accuracy (e.g., offering 

capabilities to easily overwrite predicted data with 

computed values, or to align clock biases to a 

common reference). 

- Numerical integrators, including fixed-step 

algorithms (such as the explicit Runge-Kutta 8, or 

the multi-step Adams-Bashforth-Moulton 8) and 

variable-step algorithms (such as the Runge-Kutta-

Fehlberg 7/8). 

- State of the art orbit modelling, considering the 

most common perturbations in geodesy required for 

POD applications such as geopotential (including 

time-varying terms), solid and ocean tides, 

atmospheric gravity, relativity, solar radiation 

pressure (both with fixed area and using a macro-

model for the satellite), atmospheric drag (both with 

fixed area and macro-model, based on MSISE 

2000), Earth’s albedo and infra-red, empirical 

accelerations (Cycle-Per-Revolution, CPR), both 

long and impulsive manoeuvres, CODE empirical 

accelerations (ECOM-2 model), power thrust, etc. 

The full list is given in Tab 2. 

- Availability of analytical propagators based on 

Keplerian motion and Two-Line Element (TLE) 

SGP4 propagation theory. 

- Capability to handle linear covariance 

propagation. 

- Handling of the most common tracking 

techniques, including multi-GNSS (GPS, Galileo), 

SLR, DORIS, among others including trajectory 

data (XYZ) as tracking measurements. 

- State of the art observation reconstruction 

modelling, including clock biases, relativity, time 

of flight effects, instrumental delays (both as code 

and phase biases), phase wind-up, ambiguities, 

phase centre offset and variations (PCO, PCV), 

ionosphere (based on the Galileo Nequick model), 

troposphere (based on Mendes-Pavlis, 

Saastamoinen or Niell models), ground station tide 

effects (including pole tides, permanent tides, ocean 

loading, solid tides and ITRF20 seasonal geocenter 

motion modelling effects). 

- Parameter estimation algorithms based on 

Weighted Least Squares and Extended Kalman 

Filter (EKF), allowing to estimate orbit parameters, 

clocks and biases (epoch-wise, using the snapshot 

approach), ground station coordinates, and 

geophysical model parameters such as tropospheric 

zenith delay and associated mapping functions. 

Additionally, single-receiver ambiguity fixing 

algorithms to resolve integer carrier phase 

ambiguities are also implemented. 

 

MAORI is continuously evolving, adding new 

capabilities as required by internal and external needs. 

Table 2. Geophysical models available in MAORI 

Category Models 

Frames IERS 96 and 2010 conventions 

Linear Mean Pole 

Local frame converter (topocentric, 

QSW, TNW) 

Gravity COST-G, EIGEN, EGM 

Support to time-varying terms. 

Ocean tides (OTIERS): FES2014 

Solid tides (STIERS): IERS 2010 

Atmospheric gravity (AOD1B) 

Seasonal geocenter motion: ITRF20 

Third body JPL ephem. DE405, DE421 

Density MSISE00 

Space weather NOAA (RSGA), GFZ (kp_index) 

Radiation Solar Radiation Pressure (SRP) 

Earth´s albedo & infra-red 

Antenna Power Thrust 

Empiricals Constant-Per-Revolution (CPR) 

ECOM/ECOM2 

Ionosphere Nequick 

Troposphere Mendes-Pavlis, Niell, Saastamoinen 

Satellite Fixed area, macro-model 

Theoretical or real attitude laws 

Impulsive and long manoeuvres 

Station North-East-Up or ad-hoc pointing 

Post-Seismic Deformations 

ITRF20 seasonal geocenter motion 

Biases Absolute and Differential signal 

biases 

 

VI. ACCURACY AND PERFORMANCE 

In order to showcase the achievable results of the library 

in terms of accuracy, results from the Copernicus POD 

Service (with stringent accuracy requirements of cm-

level) are shown in Fig 7. It shows the daily 3D RMS of 

the differences between a reprocessing of Sentinel-1A 

precise orbits (computed with GPS data) with 

FocusPOD (SW developed using MAORI) and a 

combined solution generated as a weighted mean of 

several independent external solutions. The agreement 

between both solutions is below the 1-cm level. 
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Fig. 7. Accuracy of reprocessed POD solution of 
Sentinel-1A based on MAORI [2]. 

In terms of performance, the algorithms have been 

compared with legacy SW (NAPEOS) to measure the 

runtime, providing results in Fig. 8. These results show 

an improvement of a factor ~2 with respect to the legacy 

SW in terms of runtime, depending on the scenario. 

 

 

 

Fig. 8. Runtime performance of MAORI vs legacy 
SW. 

One of the main design considerations when keeping in 

mind accuracy and performance, considering the 

modern paradigm of HW architecture, is 

parallelization. The library is designed to run in parallel 

out of the box thanks to the explained notion of the 

Scenario not being a singleton entity. Since all 

algorithms work with data stored in the scenario, 

working with independent scenarios ensures that the 

processes can run in parallel with no risk of concurrency 

issues. However, this is not ideal from the point of view 

of data usage, as it requires loading all data in each of 

the scenarios (EOPs, geopotential coefficients, solar 

activity…). In order to enhance this, the library offers 

the notion of Light Weight Scenario (LWS), which is a 

clone of the scenario that copies the data in the models’ 

tables and that is usually common to all use-cases. The 

LWS are meant to be short-lived, as they are created to 

run a specific task and then write their results in the 

master Scenario, as depicted in Fig. 9.  

 

In addition to this, internally some algorithms make use 

of a thread-pool to run certain tasks in parallel (e.g., 

multi-satellite propagation, or event calculation). This 

however requires the user to be aware of data usage and 

to handle locks explicitly for the tables involved (for 

instance, to persist orbit data after a propagation), which 

may be cumbersome and therefore is recommended only 

for advanced users. 

 

 
Fig. 9. Depiction of Light Weight Scenario running 

in parallel. 

VII. WAY-FORWARD AND CONCLUSIONS 

GMV has developed a new FD and Geodesy library, 

written in C++ and Python, to support a large variety of 

projects, including FD, POD, SST, Simulation, etc. In 

terms of capabilities, it already contains much of the 

basic functionality of FD, but more is continuously 

added. In terms of performance, the new design and 

implementation has improved them compared to the 

legacy software. 

 

MAORI roadmap includes the implementation of 

manoeuvre planning and optimization, mission 

planning, interplanetary support (frames, propagation 

and manoeuvre planning), to complete the GNSS, SLR 

and DORIS processing, and to include VLBI, to support 

geodesy applications. MAORI is also being updated 

with SST applications (e.g., close approach), and 

simulation (e.g., orbit, clock and measurement 

simulation). 

 

VIII. REFERENCES 

[1]  Fernández Martín, C., Berzosa Molina, J., Bao 
Cheng, L., Muñoz de la Torre, M. Á., Fernández 
Usón, M., Lara Espinosa, S., Terradillos Estévez, 
E., Fernández Sánchez, J., Peter, H., Féménias, P., 
and Nogueira Loddo, C.: “FocusPOD, the new 
POD SW used at CPOD Service”, EGU General 
Assembly 2023, Vienna, Austria, 24–28 Apr 2023, 
EGU23-1908, https://doi.org/10.5194/egusphere-
egu23-1908. 

[2] Berzosa, J., Fernández Martín, C., Matuszak, M., 
Fernández Usón, M., Fernández Sánchez, J., 
Nogueira Loddo, C., Femenias, P., Peter, H., and 
Meyer, U.: “Reprocessing of Copernicus Sentinel 
POD solutions with COST-G geopotential 
models”, EGU General Assembly 2023, Vienna, 
Austria, 24–28 Apr 2023, EGU23-16137, 
https://doi.org/10.5194/egusphere-egu23-16137 

 

https://doi.org/10.5194/egusphere-egu23-1908
https://doi.org/10.5194/egusphere-egu23-1908
https://doi.org/10.5194/egusphere-egu23-16137

	Abstract
	I. Introduction
	II. Design Principles
	A. Library oriented
	B. Data vs. algorithms
	C. Data model
	D. Use cases

	III. High level requirements
	IV. Technologies
	V. Capabilities
	VI. Accuracy and Performance
	VII. Way-forward and conclusions
	VIII. References

