

29th International Symposium on Space Flight Dynamics (ISSFD)

22 - 26 April 2024 at ESA-ESOC in Darmstadt, Germany.

MAORI – A New Flight Dynamics and Geodesy Library

Jaime Fernández (1), Carlos Fernández (1), Javier Berzosa (1)

(1) GMV AD., Isaac Newton 11, 28760 Tres Cantos, Spain

Email: jfernandez@gmv.com, cfernandez@gmv.com, jberzosa@gmv.com

ABSTRACT

GMV has recently developed a new Flight Dynamics

(FD) and geodesy library called MAORI, written in

modern C++17 and Python 3 from scratch. This library

supports several projects led by GMV, including the

operational provision of Precise Orbit Determination

(POD) products of the Copernicus Sentinel satellites in

the frame of the Copernicus POD (CPOD) Service, the

simulation of tracking data for Galileo 2nd Generation

(G2G) System Test Bed, or the maintenance of a

catalogue of orbit debris.

The architecture of MAORI has been designed

following four basic principles: i) to develop a library,

rather than a collection of programs, ii) to split data from

algorithms, to enhance the reusability of data among

different algorithms, iii) to incorporate a clear data

model that represents the physical meaning (e.g.,

satellites, stations, instruments, observations, etc.) and

the relationships of the data and iv) to allow multiple use

cases: C++ binaries, Python´s wrappers, HMI, micro-

services, etc.

On top of these principles, there are two main

requirements that drove the development of MAORI:

i) to achieve the state-of-the-art accuracy, in terms of

modelling and estimation, and ii) to improve the

performance (i.e., processing time and memory usage)

as compared to similar SW, like NAPEOS. These two

requirements, together with the innovative design, were

addressed with an agile methodology, where capabilities

were added incrementally, paying special attention to

achieving high performance and accuracy. The design of

each algorithm, and the data model was optimized to

save processing time and memory. For instance, the use

of buffers, or ad-hoc mechanisms to make use of multi-

threading wherever was needed.

Finally, the architecture of the library, and each

algorithm, takes advantage of the capabilities of C++,

like OOP, polymorphism, templates, Standard Template

Library (STL), etc.

Currently, the library is capable of supporting the most

relevant FD capabilities: orbit propagation (complex

numerical propagator, analytical propagators…), orbit

determination (based on GNSS, radar, optical, passive

ranging, Satellite Laser Ranging…), manoeuvre

handling, event calculation, attitude handling,

observation simulation, etc. The development of the

library continues in several fronts: POD and geodesy,

flight dynamics (including interplanetary), space traffic

management, mission analysis and simulation.

This contribution will present the key aspects of the

design of MAORI that have contributed to its success,

focusing on the notion of library, the data model, its

performance, and accuracy. The use of MAORI to

develop FocusPOD, an operational POD application for

the Copernicus POD Service, will be shown as an

example of operational use. The roadmap of MAORI

will also be summarized.

I. INTRODUCTION

MAORI (Multipurpose Advance Orbit Restitution

Infrastructure) is a Flight Dynamics (FD) and geodesy

library written in modern C++17 and Python 3,

developed by GMV from scratch as part of an internal

research and development (R&D) activity. The library

has been designed and implemented with the goal to

support several projects that require astrodynamics

capabilities (handling of ephemerides, propagation,

events calculation…) and parameter estimation (orbit

determination, geodesy…). It combines the great

technical knowledge in the field acquired by GMV over

the years with different projects, and modern

technologies that are more compatible with today’s

programming paradigms and IT specifications. The

projects that MAORI currently supports include:

- Copernicus POD Service: operational provision of

orbital and auxiliary precise products to ESA and

EUMETSAT for the Copernicus Sentinel satellites

[2]. Seamless operational transition from NAPEOS

to a solution based on MAORI in January 2023,

keeping the same state-of-the-art accuracy

standards and improving the timeliness of the near-

real time products thanks to the new software. Both

GNSS (GPS+GAL) and SLR are routinely

processed as part of the service.

- Tracking simulator for Galileo 2nd Generation

(G2G) System Test Bed: the new G2G system test

bed will count with a tool developed in Python, and

using MAORI, to generate realistic tracking of

GNSS observations from GNSS sensor ground

stations, SLR data from ground telescopes, and ISL

between the future Galileo satellites.

- Quality control for LEO-PNT: the consortium led

by GMV in LEO-PNT, the new constellation of

European GNSS emitters in LEO regime, will also

make use of a solution based on MAORI to perform

offline quality control in post-processing of the

broadcast ephemerides.

- Support to Space Situational Awareness (SSA)

activities: COTS developed by GMV based on

MAORI are also routinely used in other projects to

perform cataloguing activities, association (track-

to-orbit, orbit-to-orbit, track-to-track) and

mailto:jfernandez@gmv.com
mailto:cfernandez@gmv.com
mailto:jberzosa@gmv.com

29th International Symposium on Space Flight Dynamics (ISSFD)

22 - 26 April 2024 at ESA-ESOC in Darmstadt, Germany.

covariance analysis.

II. DESIGN PRINCIPLES

The library has been designed following four basic

principles, depicted in Fig. 1:

- The focus is to develop a library, rather than a

collection of programs. This means that all the

functionality in the library is as generic as possible,

without focusing on one particular use-case, and

allowing a great level of user-interaction to decide

how to build their applications. This is key to fulfil

the requirement to support a variety of projects that

require different architectures and technologies,

always keeping flexibility and generality in mind

during the development. The programs can then be

easily built using MAORI as a dependency with

clear interfaces, both for entry-points (inputs &

configuration) and results (outputs).

- The data shall be kept clearly separated from

algorithms. This principle means that modules

within the library should work with clearly

documented data that is not part of the algorithm

itself; the algorithm should only concern with the

calculations. This is a must when trying to fulfil the

previous design principle, as being flexible means

that the algorithms do not take the responsibility to

acquire the data, organise it, or post-process it in

any hard-coded way. Instead, the algorithms work

with data that is already organised.

- Data shall be organised in a clear, relational data

model that represents reality as faithfully as

possible. This means, e.g., that the data model

includes physical entities such as satellites, stations,

instruments, oscillators, or antennas. This principle

comes naturally from the previous one, since the

algorithms are required to work with previously

organised, common data; it is the library’s duty to

ingest, organise, and circulate this data around the

different algorithms as the user requires. Moreover,

this also helps greatly when supporting different

projects as the captured reality is the same, even

though the particular data structures for a given

project may be particular. More information on the

data model is provided later on.

- Multiple use cases shall be supported. This

principle means that the library’s flexibility is to be

exploited by allowing to build applications in many

different ways: as a stand-alone end-to-end C++

program, as a collection of instructions that can be

chained by a script, as a service exposed in an

HTTPS server via an API, or by making use of the

Python bindings in a Jupyter Notebook, to name a

few examples. More information on bindings is

provided in a subsequent dedicated section.

Fig. 1. MAORI design principles.

A. Library oriented

MAORI is a library, not a collection of programs.

However, the library already contains high-level

functionalities, like complex orbital propagation,

measurement reconstruction or parameter estimation.

The design of the library tries to be as general as possible

to allow using the same general algorithms for multiple

purposes.

The library contains the following high-level elements:

- Clocks: It contains mostly data classes to store

clock biases in support of GNSS/DORIS

processing. It also contains the logical entities

related to clock processing (such as the oscillator).

- Contributions: It contains the algorithms for the

calculation of dynamic perturbations used in

numerical propagation, and the related geophysical

models (such as MSISE, EGM…) and their

associated data classes for storage of model data.

- Covariance: It contains data classes to support the

storage and operations with covariance matrices.

- Events: It contains the algorithms for the

calculation of events, including the root finding

algorithm, and the definition of event functions

grouped per category (satellite-related, station-

related…).

- Estimation: It contains the algorithms required to

estimate parameters, in particular the Batch Least

Squares estimator and Extended Kalman Filter.

Some auxiliary data classes are also used in support

of the estimation.

- Frames: It contains the algorithms required to

perform frame transformation, mostly focusing on

inertial to Earth-fixed conversions based on SOFA

external library.

- IOD: It contains algorithms which perform Initial

Orbit Determination (IOD).

- Logging: Auxiliary module with some basic

functionality related to logging based on spdlog

external library.

- Math: It contains some generic mathematical

algorithms such as interpolation, Legendre

polynomial functions, etc.

- Models: It contains common algorithms for

geophysical models considered by different

elements of the library, such as geopotentials, tides,

29th International Symposium on Space Flight Dynamics (ISSFD)

22 - 26 April 2024 at ESA-ESOC in Darmstadt, Germany.

ocean loading, troposphere, and ionosphere, among

others.

- Observations: It contains both the data classes that

support the storage of observations in the library

(such as the logical entities of Instrument, Link,

ObsType…) and the algorithms to work with them,

including pre-processing and reconstruction.

- Orbit: It contains the data classes that store

satellites, orbits and state vectors in generic

representations, as well as some algorithms such as

the calculation of planetary ephemerides (based on

calceph external library).

- Orientation: It contains the data classes that

support attitude and pointing as a wrapper to the

external class Eigen::quaternion, as well as

the attitude simulation algorithm.

- Parameters: It contains classes that support

auxiliary functionality related to parameters that

can be estimated by the estimation module.

- Persistence: It contains the algorithms required to

read data from external entities (files, DBs…) into

the library, and also to export data from the library

to an external medium.

- Propagation: It contains the algorithms to perform

propagation of a state vector. It includes different

types of propagators, such as numerical, Keplerian,

SGP4, etc.

- Scenario: It contains the Scenario, which is the data

class that represents the data model. It is mainly

used to organise access to the central information

and to enforce the relationships between logical

entities in the data model.

- Station: It contains data classes to support both

stations as logical entities and coordinates.

- Time: It contains data classes such as the Epoch and

the algorithms required to work with time (parse

epochs, time conversions…).

- Utils: Generic utility classes mostly related to C++

(streams utils, string utils…). It also contains the

exception types defined for the library.

B. Data vs. algorithms

With MAORI, it was decided that data will have a

central role. The goal of supporting multiple

applications requires to adopt the strategy that considers

the most demanding in terms of data, which are geodesy,

space traffic management and mega-constellations.

To allow re-using the same algorithms, or data, for

different applications requires to split them by design.

Data was organized within a data model (see next sub-

section), and algorithms were designed to make use of

this data model using ad-hoc APIs and restricting the

changes over the central data.

C. Data model

The notion of data is key in the MAORI design. This is

so because the philosophy of the library revolves around

how the data is used, what physical reality it represents,

how it relates to other entities, and what volume it may

acquire in terms of performance and ease of use. For

these reasons, the data model in MAORI has been

carefully designed to:

1. Represent the physical reality of the data.

2. Provide simplified access to this data to the

different algorithms and users.

3. Scale adequately in terms of number of elements

(e.g. keeping in mind high-rate observations, or mega-

constellations).

The adopted solution tries to mimic a relational DB, in

the sense that each component (e.g. a satellite, an

instrument) is related to each other using a unique

mechanism, which is based on keys (identifiers).

Programmatically, there are different versions tailored

for specific needs that offer a common interface across

the library: the basic one is implemented using a C++

std::map container, which uses as key a unique

identifier (whose implementation depends on the entity

being stored), and an index representing the last

accessed element, based on the principle that data is

typically used in an orderly fashion. Other specialization

is available for data which require interpolation based on

std::vector of pairs to benefit from contiguous

memory allocation, ideal for intensive access. These

containers are referred to as tables in the library. All

specializations of tables allow keeping large volumes of

data, and provide efficient search algorithms, which are

enhanced keeping the location of the last accessed

element, which is useful for time-series.

The data model is represented by a class called

Scenario, which contains all the different tables and

handles the access to the data by providing pointers and

taking care of the life cycle of the objects in memory.

The Scenario is not a singleton by design (i.e., several

Scenarios with independent data can coexist). This has

been done so to ensure an easy means of parallelization,

albeit not ideal in terms of data duplicity.

Within the library, conceptually, we can distinguish two

types of tables:

- Logical Entities, which represent physical (i.e.,

real) entities, like a satellite, or a station.

- Physical Data, which represent elements like

orbits, clocks, or attitude.

The main reason of this separation is that while both are

located on tables, the logical entities do not have the

concept of interpolation, while there is with the physical

data. For instance, it is possible to interpolate clocks,

orbits, attitude, etc., but it is hardly seen how a table of

satellites could be interpolated.

The Logical Entities are composed by: Satellite, Station,

Instrument, Oscillator and Antenna. It would be possible

to even consider Oscillator and Antenna as Instrument,

but the separation is done because Oscillator and

29th International Symposium on Space Flight Dynamics (ISSFD)

22 - 26 April 2024 at ESA-ESOC in Darmstadt, Germany.

Antennas do not generate observables, while

Instruments do. Fig. 2 shows the relationship between

the Logical Entities.

Fig. 2. Relationship between Logical Entities.

It can be seen that:

- There could be several instruments on each satellite

or station. For instance, a GNSS, DORIS and S-

band receivers.

- The instruments could have [0, 1 …] antennas, to

cover cases like:

o None: e.g., an accelerometer does not use an

antenna.

o One: e.g., a ground station on S-band with one

antenna.

o Several: e.g., an on-board GNSS receiver

connected to two antennas on opposite sides of

the satellite.

- Oscillators can provide the signal to several

instruments, which is typically the case on-board

and on ground stations. For example, in Sentinel-3

or Sentinel-6 mission, there is an Ultra Stable

Oscillator (USO) that provides a signal to the GNSS

and DORIS receivers.

The Physical Data can have relationships with the

Logical Entities (e.g. orbits), or not (e.g. the EOPs). Fig.

3 shows some of the relationship between the Logical

Entities (in red) and some of the most usual Physical

Data (in grey).

Fig. 3. Relationship between some Logical Entities
and Physical Data.

It can be seen:

- A satellite can have [0, 1 …] Orbits, Attitude,

Covariance and State-Vectors. It is clarified that

even if Orbits are composed of state-vectors, a

separation is done to support specific applications

where single state-vectors are needed. Having

several orbits associated to a single satellite (and the

same happens with the other physical data), is

useful, for instance, to perform comparisons

between them.

- An antenna can have [0, 1 …] Pointing describing

its orientation in time. Typically, it will be just one.

- A station can have [0, 1 …] Coordinates describing

its evolution in time. Typically, it will be just one.

- Finally, an oscillator will have [0, 1 …] Clocks.

This is useful to perform clock comparisons, but

also to support advance applications where different

clocks realizations are done of the same oscillator,

depending on the GNSS signals used.

Although many more elements are present in the library,

the Observations layer is showed in Fig. 4 as an

example.

Fig. 4. Relationship between Logical Entities and
Observations organisation.

It can be seen that:

- A Link is basically the concept that established the

relationship between the different instruments that

create an observable. Link is a virtual class, with

several derived classes that can be:

29th International Symposium on Space Flight Dynamics (ISSFD)

22 - 26 April 2024 at ESA-ESOC in Darmstadt, Germany.

o XYZ, which in this case just refers to the centre

of mass of a satellite, or the location of a

particular instrument on-board (e.g., the GNSS

antenna).

o One way and two-way links, which include the

instruments involved on the satellite/s and the

ground station/s.

o Four ways, on which there can be up to four

instruments involved (e.g., GNSS double

differences).

- The ObsType is the virtual class that represents the

type of observable. Its derived classes can be:

o GNSS Pseudo-range, Carrier-phase.

o XYZ.

o SLR.

o DORIS.

o Optical.

o Radar.

o Passive ranging.

- Observations and Ambiguities are related with the

Link (to get information about the instruments

involved), and ObsType (to know the type of

observation). The main difference between both is

that Observations are typically epoch-based, while

(GNSS phase) Ambiguities are interval-based (per

pass).

- SignalBiases represents the instrumental delays,

and therefore, it is associated to the Instrument.

The central data model is key to the design of MAORI

and has helped achieved the challenges posed by the

demanding requirements of the library.

D. Use cases

The design of MAORI aims to support different use

cases, understood as different ways of generating

applications or using the library. Following are just

some examples:

- C++ binaries: to construct a C++ program that

performs specific tasks as configured. Examples are

a propagator, an orbit determination, an orbit

comparison tool, etc.

- Python binding: to construct Python scripts, which

perform specific tasks by calling to the C++ library.

Indeed, the same C++ binaries described in the

previous bullet can also be constructed with Python

scripts (not compiled), with minimum

computational penalty meanwhile there is not much

data transfer between the C++ and Python layers.

- Service / micro-services: to construct applications

using a service or micro-services principles. They

could be constructed using any of the above-

mentioned architectures.

- Service / client architecture.

III. HIGH LEVEL REQUIREMENTS

On top of the mentioned design principles, there are two

main requirements that drove the development of

MAORI:

1. To achieve the state-of-the-art accuracy, in terms

of modelling and estimation.
2. To improve the performance (i.e., processing

runtime and memory/CPU usage) as compared to

similar SW suites.

These two requirements, together with the innovative

design, were addressed with an agile methodology,

where capabilities were added incrementally, paying

special attention to achieving high performance and

accuracy in each of the steps of the way. The design of

each algorithm, and the data model was optimized to

save processing time and memory. For instance, by

using buffers of previously computed calculations, or

ad-hoc mechanisms to exploit multi-threading wherever

was needed.

An example of this process of development is the

inclusion of a relational data model in the library based

on the C++ Standard Template Library (STL): in a first

attempt, several implementations were added (e.g. based

on an indexed vector, based on a map using IDs as

key, based on linked lists…). When the different

options were implemented, they were tested in a

benchmark to select which was the option that satisfied

better the different use cases in terms of addition,

retrieval, and erasure, considering various orders of

magnitude of expected elements (e.g. number of

potential satellites vs. number of potential observations).

Out of this process, a final solution based on the C++

std::map with an indexed access was chosen. Later

on, in order to improve access performance, the

std::vector was implemented too while keeping a

common, transparent interfaces across the library.

The added value of the agile methodology together with

the careful implementation and benchmarking of all

low-level elements allowed that once the more complex

algorithms were available (e.g. to carry out a full end-to-

end orbit determination, including observation

decoding, preprocessing, initial solution computation

and iterative batch estimation, with multiple

propagations and measurement reconstructions), there

was low risk of not meeting these two requirements in

terms of accuracy and performance. Available results of

some of the algorithms are included in the following

subsections.

IV. TECHNOLOGIES

MAORI core library is written in C++ following the

C++17 standards; it makes extensive use of the C++

Standard Template Library (STL) and open-source

dependencies for all duties that are not part of the

29th International Symposium on Space Flight Dynamics (ISSFD)

22 - 26 April 2024 at ESA-ESOC in Darmstadt, Germany.

business logic of the application (i.e. astrodynamics and

geodesy). The list of dependencies is summarized in

Tab. 1.

Table 1. External dependencies of MAORI

Name Description

SOFA Standard models used in

fundamental astronomy, based on

IERS Conventions.

SGP4 SGP4 propagator for TLEs.

IERS2010 Set of routines that extend the IERS

2010 conventions.

Calceph Access the binary planetary

ephemeris files, such INPOPxx, JPL

DExxx and SPICE ephemeris files.

NRLMSISE-00 NRLMSIS 00 Atmosphere Model.

Nequick-G Algorithm to correct for ionospheric

delays based on an adaptation of the

three-dimensional NeQuick electron

density model.

Eigen Template library for linear algebra:

matrices, vectors, numerical solvers,

and related algorithms.

YAMLCpp A YAML parser and emitter.

FMT Modern formatting library.

SPDLog Fast C++ logging library.

Xerces-c Validating XML parser.

bxzstr Access to compressed streams.

Thread-pool Thread Pool for parallel processing.

Pybind11 Python binding library.

Pagmo Optimization algorithms.

In order to exploit the flexibility granted by Python and

the powerful libraries available in that language (e.g., for

data visualisation or to apply machine learning),

MAORI exposes a set of Python bindings to the most

relevant functionality of the library so that it can be

transparently used from Python. This version is called

pymaori, although it conceptually represents the same

library as the C++ core version.

Fig. 5. Data flow between C++ (library layer),

Python binding (pymaori) and Python app.

The interaction between the C++ layer and the Python

layer is shown in Fig. 5, where also the exploit of the

data model is shown. In this diagram, the data is read

using the providers and ingested into data model (within

the C++ classes), where it is organised, then the driving

algorithm (in Python) calls the required algorithms to

carry out the business logic. Finally, the obtained results

(data) can be handled in C++ or in Python directly to

exploit it (e.g. in Grafana, or in a notebook).

Fig. 6. Example of Python code making use of
MAORI bindings (marked in red).

In order to show the look and feel of this concept, Fig. 6

shows an example of the seamless usage of MAORI

from a Python environment, in this case a Jupyter

Notebook exploiting visualisation in 3D.

V. CAPABILITIES

The capabilities of MAORI include, inter alia, the

following elements:

- Implementation of the most common international

formats in FD, POD, and geodesy, including

observation and navigation RINEX v3 and v4,

SP3c/d, Clock RINEX, SINEX, ESA EOF,

Geopotentials, EOPs, leap seconds, RSGA (solar

activity), atmospheric gravity, among others.

- Frame of reference transformations making use of

the latest IERS conventions (2010), focusing on

transformations between Earth-fixed (ITRF) and

inertial (GCRF). Intermediate frames and different

IERS conventions are used for specific algorithms,

such as TEME for TLE propagation.

- Handling of different time scales including TAI,

UTC, UT1 and various GNSS time systems such as

GPS and Galileo reference time. Internally,

MAORI uses TAI.

- Handling of different satellites’ attitude, including

interpolation of real attitude data or simulation

following a number of available theoretical laws

(including the GNSS satellites). More attitude laws

can be readily added by extending the current basic

pointing laws, which include geocentric and

29th International Symposium on Space Flight Dynamics (ISSFD)

22 - 26 April 2024 at ESA-ESOC in Darmstadt, Germany.

geodetic modes based on different ellipsoids, Sun-

pointing, orbital pointing…

- Most common interpolation algorithms for orbits,

attitude, clock biases, EOPs…

- Event calculation, including visibility from

sensors at orbiting platforms and stations, third

body eclipses…

- Merging algorithms for orbits and clocks, and

geophysical data such as the EOPs or solar activity

data which allow to easily combine different inputs

while keeping the expected accuracy (e.g., offering

capabilities to easily overwrite predicted data with

computed values, or to align clock biases to a

common reference).

- Numerical integrators, including fixed-step

algorithms (such as the explicit Runge-Kutta 8, or

the multi-step Adams-Bashforth-Moulton 8) and

variable-step algorithms (such as the Runge-Kutta-

Fehlberg 7/8).

- State of the art orbit modelling, considering the

most common perturbations in geodesy required for

POD applications such as geopotential (including

time-varying terms), solid and ocean tides,

atmospheric gravity, relativity, solar radiation

pressure (both with fixed area and using a macro-

model for the satellite), atmospheric drag (both with

fixed area and macro-model, based on MSISE

2000), Earth’s albedo and infra-red, empirical

accelerations (Cycle-Per-Revolution, CPR), both

long and impulsive manoeuvres, CODE empirical

accelerations (ECOM-2 model), power thrust, etc.

The full list is given in Tab 2.

- Availability of analytical propagators based on

Keplerian motion and Two-Line Element (TLE)

SGP4 propagation theory.

- Capability to handle linear covariance

propagation.

- Handling of the most common tracking

techniques, including multi-GNSS (GPS, Galileo),

SLR, DORIS, among others including trajectory

data (XYZ) as tracking measurements.

- State of the art observation reconstruction

modelling, including clock biases, relativity, time

of flight effects, instrumental delays (both as code

and phase biases), phase wind-up, ambiguities,

phase centre offset and variations (PCO, PCV),

ionosphere (based on the Galileo Nequick model),

troposphere (based on Mendes-Pavlis,

Saastamoinen or Niell models), ground station tide

effects (including pole tides, permanent tides, ocean

loading, solid tides and ITRF20 seasonal geocenter

motion modelling effects).

- Parameter estimation algorithms based on

Weighted Least Squares and Extended Kalman

Filter (EKF), allowing to estimate orbit parameters,

clocks and biases (epoch-wise, using the snapshot

approach), ground station coordinates, and

geophysical model parameters such as tropospheric

zenith delay and associated mapping functions.

Additionally, single-receiver ambiguity fixing

algorithms to resolve integer carrier phase

ambiguities are also implemented.

MAORI is continuously evolving, adding new

capabilities as required by internal and external needs.

Table 2. Geophysical models available in MAORI

Category Models

Frames IERS 96 and 2010 conventions

Linear Mean Pole

Local frame converter (topocentric,

QSW, TNW)

Gravity COST-G, EIGEN, EGM

Support to time-varying terms.

Ocean tides (OTIERS): FES2014

Solid tides (STIERS): IERS 2010

Atmospheric gravity (AOD1B)

Seasonal geocenter motion: ITRF20

Third body JPL ephem. DE405, DE421

Density MSISE00

Space weather NOAA (RSGA), GFZ (kp_index)

Radiation Solar Radiation Pressure (SRP)

Earth´s albedo & infra-red

Antenna Power Thrust

Empiricals Constant-Per-Revolution (CPR)

ECOM/ECOM2

Ionosphere Nequick

Troposphere Mendes-Pavlis, Niell, Saastamoinen

Satellite Fixed area, macro-model

Theoretical or real attitude laws

Impulsive and long manoeuvres

Station North-East-Up or ad-hoc pointing

Post-Seismic Deformations

ITRF20 seasonal geocenter motion

Biases Absolute and Differential signal

biases

VI. ACCURACY AND PERFORMANCE

In order to showcase the achievable results of the library

in terms of accuracy, results from the Copernicus POD

Service (with stringent accuracy requirements of cm-

level) are shown in Fig 7. It shows the daily 3D RMS of

the differences between a reprocessing of Sentinel-1A

precise orbits (computed with GPS data) with

FocusPOD (SW developed using MAORI) and a

combined solution generated as a weighted mean of

several independent external solutions. The agreement

between both solutions is below the 1-cm level.

29th International Symposium on Space Flight Dynamics (ISSFD)

22 - 26 April 2024 at ESA-ESOC in Darmstadt, Germany.

Fig. 7. Accuracy of reprocessed POD solution of
Sentinel-1A based on MAORI [2].

In terms of performance, the algorithms have been

compared with legacy SW (NAPEOS) to measure the

runtime, providing results in Fig. 8. These results show

an improvement of a factor ~2 with respect to the legacy

SW in terms of runtime, depending on the scenario.

Fig. 8. Runtime performance of MAORI vs legacy
SW.

One of the main design considerations when keeping in

mind accuracy and performance, considering the

modern paradigm of HW architecture, is

parallelization. The library is designed to run in parallel

out of the box thanks to the explained notion of the

Scenario not being a singleton entity. Since all

algorithms work with data stored in the scenario,

working with independent scenarios ensures that the

processes can run in parallel with no risk of concurrency

issues. However, this is not ideal from the point of view

of data usage, as it requires loading all data in each of

the scenarios (EOPs, geopotential coefficients, solar

activity…). In order to enhance this, the library offers

the notion of Light Weight Scenario (LWS), which is a

clone of the scenario that copies the data in the models’

tables and that is usually common to all use-cases. The

LWS are meant to be short-lived, as they are created to

run a specific task and then write their results in the

master Scenario, as depicted in Fig. 9.

In addition to this, internally some algorithms make use

of a thread-pool to run certain tasks in parallel (e.g.,

multi-satellite propagation, or event calculation). This

however requires the user to be aware of data usage and

to handle locks explicitly for the tables involved (for

instance, to persist orbit data after a propagation), which

may be cumbersome and therefore is recommended only

for advanced users.

Fig. 9. Depiction of Light Weight Scenario running

in parallel.

VII. WAY-FORWARD AND CONCLUSIONS

GMV has developed a new FD and Geodesy library,

written in C++ and Python, to support a large variety of

projects, including FD, POD, SST, Simulation, etc. In

terms of capabilities, it already contains much of the

basic functionality of FD, but more is continuously

added. In terms of performance, the new design and

implementation has improved them compared to the

legacy software.

MAORI roadmap includes the implementation of

manoeuvre planning and optimization, mission

planning, interplanetary support (frames, propagation

and manoeuvre planning), to complete the GNSS, SLR

and DORIS processing, and to include VLBI, to support

geodesy applications. MAORI is also being updated

with SST applications (e.g., close approach), and

simulation (e.g., orbit, clock and measurement

simulation).

VIII. REFERENCES

[1] Fernández Martín, C., Berzosa Molina, J., Bao
Cheng, L., Muñoz de la Torre, M. Á., Fernández
Usón, M., Lara Espinosa, S., Terradillos Estévez,
E., Fernández Sánchez, J., Peter, H., Féménias, P.,
and Nogueira Loddo, C.: “FocusPOD, the new
POD SW used at CPOD Service”, EGU General
Assembly 2023, Vienna, Austria, 24–28 Apr 2023,
EGU23-1908, https://doi.org/10.5194/egusphere-
egu23-1908.

[2] Berzosa, J., Fernández Martín, C., Matuszak, M.,
Fernández Usón, M., Fernández Sánchez, J.,
Nogueira Loddo, C., Femenias, P., Peter, H., and
Meyer, U.: “Reprocessing of Copernicus Sentinel
POD solutions with COST-G geopotential
models”, EGU General Assembly 2023, Vienna,
Austria, 24–28 Apr 2023, EGU23-16137,
https://doi.org/10.5194/egusphere-egu23-16137

https://doi.org/10.5194/egusphere-egu23-1908
https://doi.org/10.5194/egusphere-egu23-1908
https://doi.org/10.5194/egusphere-egu23-16137

	Abstract
	I. Introduction
	II. Design Principles
	A. Library oriented
	B. Data vs. algorithms
	C. Data model
	D. Use cases

	III. High level requirements
	IV. Technologies
	V. Capabilities
	VI. Accuracy and Performance
	VII. Way-forward and conclusions
	VIII. References

