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Abstract – Flight dynamics operations of unmanned 
space missions have always required an important effort 
in terms of activities and procedures organization, 
teams’ coordination, and human resources. In particular 
for those missions that require high precision, 
robustness, and efficiency to reach the objectives and 
ensure the safety of the spacecraft.  
Typically, a flight dynamics team must monitor and 
control a spacecraft’s orbit and attitude using data from 
a limited time span, while ensuring rapid response to 
critical events such as collision avoidance, tumbling 
recovery, deep space maneuvers or a close flyby of a 
celestial object. For example, during the Launch and 
Early Orbit Phase (LEOP) the flight dynamics team may 
be required to provide a report on the orbit and attitude 
status in a very short time using data that may still be 
arriving in real-time from the ground station. All the 
aspects described previously can become even more 
critical in the case of flight dynamics operations for 
satellites constellations, deep space small satellites, or 
flagship scientific missions like Cassini or Juice. To 
reduce the risks of operational and human errors, 
multiple dedicated software tools and a large flight 
dynamics team are usually employed, which leads to an 
increase in the complexity and costs of satellite 
operations. In addition to the use of accurate software 
and robust navigation strategies, a potential mitigation 
for the previous problems could be the use of an 
automated flight dynamics system for Near Real-Time 
(NRT) operations to be used in support to the navigators. 
The GODOTflow project is aiming for this latter goal 
with the development of a software infrastructure, based 
on ESA/ESOC's GODOT and coded in Python, that 
would allow the user to perform different types of 
automated NRT flight dynamics tasks. Conceptually, 
data in GODOTflow is continuously transmitted and 
managed within the system such that any new received 
information passes through each parallel or subsequent 
process, depending on the user's chosen configuration. 
In this way the configured flight dynamics system reacts 
autonomously to any new information by providing 
constant updates about the tracked quantities and 

parameters. To perform the described activities in a 
scalable and extensible way, the actor model 
programming has been adopted as it allows for high 
scalability, fault tolerance, and responsiveness. In this 
programming technique, actors are identified as 
independent orchestrated entities that can communicate 
with each other by sending and receiving messages, 
without sharing any memory or state. The flight 
dynamics processes (actors) at the core of GODOTflow 
will include activities such as acquiring and storing real 
data from different sources (e.g. acquiring radiometric 
observations from the shared endpoint of a ground 
station), simulation of flight dynamics data (e.g. 
simulation of real-time LEOP tracking data), orbit 
determination, station keeping, as well as storage, 
stream, and visualization of the obtained results. 

The strategy adopted in GODOTflow would help to 
increase the efficiency of the flight dynamics process by 
improving its scalability and organization, while 
reducing non-critical team workload and human errors. 
 

I. INTRODUCTION 
Flight dynamics operations of a spacecraft (S/C) are a 
complex and crucial aspect of space exploration. It 
involves the study and management of the movement 
and control of a S/C in outer space. This process is 
crucial for the success of any space mission, as it ensures 
the safe and efficient operation of the S/C. 
These operations usually involve different kind of 
activities and tasks like pre-processing telemetry and 
observations, perform the Orbit Determination (OD), 
evaluate the trajectory uncertainties at a certain time, 
computing a correction maneuver. Many of these tasks 
are usually performed by different groups of people 
using dedicated tools which may not be in harmony with 
each other and may require additional procedures and 
interfaces. 
Furthermore, due to the complexity of the organization 
of the described activities, the data flow within the flight 
dynamics process can be slow, and the entire navigation 
activity may be less responsive to the critical events. To 
deal with these critical issues, a large navigation team is 
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usually employed, which leads to further complexity in 
organization and procedures as well as an increase in the 
costs of satellite operations. However, in situations 
where high responsiveness from the navigation team is 
required, such as during a Launch and Early Orbit Phase 
(LEOP) or during a critical maneuver (e.g. orbit 
insertion maneuver), the described navigation system 
may require a considerable organizational and personnel 
effort with a consequent increase in the risk of 
operational and human errors. Nonetheless, scalability is 
also drastically affected since requiring, for example, the 
same high responsiveness for multiple S/C as in a low 
earth orbit (LEO) constellation would simply 
exponentially increase the described costs and efforts. 
In that sense, performing flight dynamics operations for 
one or multiple S/C with a Near Real-Time (NRT) 
awareness requirement may be challenging or difficulty 
achievable without a proper automation and software 
system. 
There are some examples of automated applications for 
flight dynamics operations, such as [1] and [2], mainly 
for Earth missions or constellations where multiple 
satellites are flown by a single flight dynamics team. 
However, these applications primarily use proprietary 
software usually compiled in Java and C++.  The use of 
these programming languages offers reliability and 
robustness on the one hand, but less flexibility and 
extensibility on the other. 
For example, using an interpreted programming 
language like Python allows to write software efficiently 
and quickly, ensuring high extensibility and adaptability 
to many types of problems. State-of-the-art Python-
based navigation software with a C++ core layer, such 
as ESA’s GODOT [2] and NASA/JPL’s MONTE [3], 
have demonstrated great reliability in navigating near 
Earth and deep space missions, as well as high 
extensibility and adaptability to different flight 
dynamics problems. 
The GODOTflow project fits into this context with the 
aim of proposing a highly scalable and automated 
software infrastructure, coded in Python and based on 
ESA's GODOT, for NRT flight dynamics operations, 
with a focus on the S/C navigation. This paper describes 
the concept and implementation of GODOTflow by 
proposing also a potential use case with a simulated 
example. 
 

II. CONCEPT 
The main purpose of the activity was to prototype a NRT 
astrodynamics data processing system based on 
GODOT which can interface with modern S/C 
operations applications, e.g. EGS-CC [4], and be used 
by other actors to process data for operations. The 
current vision of GODOTflow is to have an 
infrastructure that would allow the user to perform the 
following operations in NRT: 

• Simulate data or get real data (e.g., radiometric 

observations) from other sources. 
• Process them through a set of configurable 

activities like an OD process. 
• Store the results into a database or stream them 

to other processes. 
• Postprocessing results to perform evaluations 

such as computing orbital events, propagate the 
OD covariance, compute an orbital maneuver. 

• Visualizing the results with modern web-based 
user interfaces. 

Based on this vision, the GODOTflow project has been 
inspired by computational models for data streaming 
and data flow management, in particular the actor model 
paradigm [5]. As a result, GODOTflow abstracts each 
flight dynamics operation as a single independent 
execution unit, called actor, that receives input and 
generates output by reacting to the incoming data stream 
asynchronously. 
The actors have their own internal state, they can be 
created, destroyed and exchanged dynamically during 
the execution of the program. From a functional point of 
view, the actor is a simple interface that is easy to be 
understood, developed and debugged. This model 
enables functional decomposition that allows the user to 
optimize and scale actors independently, which is not 
possible with monolithic components. Furthermore, 
multiple actors in parallel provide an excellent fault 
tolerance since the faulty actor can be easily identified 
and circumscribed without breaking the entire 
application. In that sense, GODOTflow exploits the 
actors in such a way that what becomes fundamental for 
the application’s context is the data flow. A single 
GODOTflow application has been named “flow” 
because it is composed by actors that through their 
interaction creates a flow of information from the 
originator up to the very the last recipient.  
The data is handled by using three main 
characterizations: static data, periodically updated files 
and procedural data. The static data refers to such data 
that is rarely updated like the planetary ephemerides or 
the ground stations database. The periodically updated 
files could be the atmospheric calibrations, or the 
observations received in batches from a ground station. 
Finally, the procedural data is the one that is generated 
in the flow during the NRT activity. For example, 
procedural data can be the residuals of the OD process, 
or the observations if they are flowing from a generator 
that is an actor of the flow (e.g. radiometric data 
simulator) or an external service attached to an input of 
the flow (e.g. ground station). 
To efficiently manage the actors and flow execution an 
orchestrator is required. The role of the orchestrator is 
mainly to coordinate the interaction between the actors, 
manage the creation, termination and communication 
between them and monitor their status to resolve any 
potential conflict or problem. The GODOTflow 
orchestrator is then in charge of defining the order and 
execution logic of the defined actors, distributing the 
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actors across different threads to enable parallel 
execution, and managing resource allocation. 
 

III. IMPLEMENTATION 
The implementation of GODOTflow has been 
performed by using only open-source libraries and tools. 
Currently, because of the lack of a comprehensive actor 
system for Python, the implementation of the 
GODOTflow system prototype started with a core 
Python’s library that contains the following elements: 
the actor model infrastructure, the application (flow) 
interface, a set of GODOT models and pre-defined 
actors to perform OD and radiometric data simulation, 
and a web-based metric visualizer (e.g. visualization of 
covariance propagation, residuals, observations). 
Furthermore, since GODOT does not currently support 
serialization of all constituent classes and quantities (e.g. 
the universe or partial derivatives are not serializable), it 
was necessary to add additional models and interfaces to 
the GODOTflow Python’s library to temporarily 
circumvent this limitation that affects tasks like the 
stream or the storage of an OD solution. 
The implemented basic actor interface is characterized 
by receive and send methods used to exchange data 
between actors, and a process method that represents the 
task that the actor will perform each time a new message 
is received. The flow interface is characterized by a 
compile method that takes a blueprint to create the 
connections between the actors as well as start them in 
the right order. The entire actor and flow configuration 
are then placed into a single Python script sent to the 
orchestrator for deployment. 
Despite its high flexibility and ease of use, Python code 
runs on a Python interpreter that, through a system called 
Global Interpreter Lock (GIL), does not allow thread 
concurrency due to the risk of race conditions and 
memory corruption for concurrent object access. 
To circumvent this limitation and guarantee parallelism, 
high scalability, and efficient orchestration, the Ray 
framework [6] has been used. Ray is a powerful unified 
computing tool for Python-based parallel programming, 
distribution of applications, and algorithms 
optimization. It natively supports the actor model 
paradigm, and it offers the possibility of orchestrating 
the deployed actors, control their status and manage the 
resources. Moreover, Ray can be deployed on a 
Kubernetes [7] cluster allowing for an operative ready 
environment that is completely scalable. 
For GODOTflow, the use of a Ray cluster deployed on 
Kubernetes was adopted with the aim of having a test 
environment as close as possible to an operational case. 
To manage the exchange of data between the actors the 
Apache Kafka [8] open-source data streaming platform 
has been used. Kafka runs on a dedicated service on the 
Kubernetes cluster, and it optimizes the transmission of 
the data through a distributed architecture of producer 
and consumers. This transmission system, that is named 

topic, can be thought as a pipe into which information is 
poured by producers and then downloaded by 
consumers at any stage. In the GODOTflow case, topics 
were only used for one-to-one communication between 
actors. 
To enable a permanent results storage and easy access 
by services and users outside the cluster, the NoSQL 
[10] MongoDB [11] database system was used. The 
latter database allows for easy integration with Python 
and provides high availability, flexibility, horizontal 
scalability, and support for many other programming 
languages as well. Furthermore, given its nature as a 
document database, integration with the existing 
JSON/YAML file format supported by GODOT and 
GODOTflow was straightforward and allows for 
efficient storage of both observations and results, as well 
as configuration files for universe, trajectories, OD filter 
and a-priori covariance definition. 
For the metrics visualization, a Python web-based 
service has been developed by using Streamlit [12], a 
modern Python library capable of turning Python scripts 
into shareable web apps. Thanks to this feature, the 
GODOTflow visualizer system takes advantage of 
modern web-based technologies without renounce the 
use of Python for an efficient integration with the rest of 
the software. Currently, the visualizer service is 
intended to run on a different host (outside the 
Kubernetes cluster) so that the resources required for 
multiple users to log in simultaneously are not taken 
away from those required by the actors of the flows. To 
obtain information from the flow, the viewer can interact 
with a designated actor via Python FastAPI [13] or by 
querying data stored in the MongoDB databases. 
Finally, the GODOTflow library provides a set of pre-
defined actors to perform several standard OD activities, 
in particular: 

• ObservationsSimulator: an actor that calculates 
and transmits radiometric observations as if 
they came directly from a ground station in the 
form of data batches (e.g. data per tracking pass 
or five observations every five second). 

• OrbitDeterminationProcess: an actor that 
receives the observations as input, performs the 
OD process by calculating the residuals and 
executing a least square filter, and transmits the 
computed residuals and the solution as output. 
This actor can also store the results to the 
MongoDB database. 

• StateProvider: a post-processing actor that 
receives an OD solution as input and performs 
on-demand evaluation of useful quantities, 
such as covariance propagation and estimated 
state, via remote Ray calls or FastAPI requests. 
This is an example of an actor that can be 
designated for the visualizer activities. 

A graphical representation of the described 
GODOTflow implementation is reported in Fig. 1. By 
looking at the figure it can be see that the three-actor 
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flow application runs as a Ray job on KubeRay using the 
functionalities of Kafka and MongoDB that are hosted 
as separated nodes on the Kubernetes cluster. The 
persistent data is stored in a shared filesystem mount or 
uploaded directly with the job. The exchange of results 
with the external visualizers or users (dashed lines) is 
made through FastAPI with HTTP connections, or with 
the Python driver in the case of an access to MongoDB. 
 

 

Fig. 1. Current GODOTflow implementation schema. 
 

IV. USE CASE EXAMPLE 
To test and analyze the entire GODOTflow system, an 
example use case was studied. The use case considers 
the NRT OD of a S/C that is orbiting the Earth in a Sun-
synchronous polar orbit at 800 km of altitude. The S/C 
is tracked by the 4.5 m New Norcia 2 (NNO-2) antenna  
[14] which provides two-way Doppler observations in 
X-band with 1 s count time. The S/C performs also a test 
orbital maneuver of 5 m/s, one day after the initial 
epoch, in the direction of the orbital velocity vector. To 
simulate this use case, a four-actor GODOTflow 
application was implemented. The application was then 
deployed to the KubeRay cluster. 
First, an observations simulator actor mimics the NNO-
2 station by initially propagating the S/C trajectory and 
simulating Doppler observations in each viewing period 
computed in the selected time interval. The simulated 
observations are then corrupted with white Gaussian 
noise (with a standard deviation of 0.1 mm/s) and 
streamed in batches of 5 observations every 5 seconds. 
The simulator actor is then connected to two OD process 
actors, one (named “passthrough”) for directly 
computing the residuals (with only the a-priori dynamic 
model) and the other (named “estimator”) for estimating 
the trajectory using a least squares filter. Both the OD 
actors store the residuals in the MongoDB database 

while the actor that is doing the estimation is also storing 
the obtained solution and the configuration files. The 
estimator actor estimates the S/C initial state and the test 
orbital maneuver (impulsive model) with the filter 
configuration provided in Tab. 1. 
The OD estimator actor is also connected to a state 
provider actor to which it streams the obtained solution. 
The state provider actor replicates the OD solution in its 
internal memory and uses it to perform the required 
post-processing calculations via a Ray remote call or a 
FastAPI request. The implemented state provider actor 
allows to evaluate the S/C state and covariance in the 
required epochs and reference systems. 
 

Table 1. Filter setup of the OD estimator actor. 
 
Parameter Component A-priori Sigma 
S/C epoch 

state 
Position 
Velocity 

100 m 
1 m/s 

Test 
Maneuver 

Delta-V 
Right ascension 

Declination 

10% of nominal 
0.1 deg 
0.1 deg 

Doppler 
Weight N/A 2e-3 Hz 

(0.1 mm/s @ X-band) 
 
A visualization system runs as a web service on a 
different host than the one where KubeRay is running on 
and provides two web pages for viewing OD results: 
state covariance viewer and residuals viewer. The state 
covariance viewer enables the plotting of the S/C state’s 
uncertainty evolution by configuring the center (e.g. 
Earth), reference frame, coordinate system (e.g. 
Cartesian or Keplerian), and dates to which propagate 
the covariance. With the input that the user has provided, 
the covariance viewer sends a request to the designated 
state provider actor through the FastAPI interface. This 
information is updated as soon as a new solution is 
received by the state provider. Fig. 2 shows the 
covariance viewer page displaying the evolution of the 
S/C cartesian position uncertainty in the Earth-centered 
International Celestial Reference Frame (ICRF). 
 

 

Fig. 2. S/C position uncertainty evolution (cartesian 
coordinates, with respect to the Earth in the ICRF frame) 
displayed in the web-based visualizer service. The red 
line represents the 3-sigma Root Sum of Squares (RSS) 
of the position uncertainties X, Y and Z.  
 
The visualization of the residuals is performed by the 
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residuals viewer tool that queries the databases of the 
OD actors within the MongoDB instance. The residuals 
stored in the databases are updated by the OD actors 
every time a new batch of data is processed. Therefore, 
the residual viewer page automatically shows the data as 
it is being processed and stored. Fig. 3 shows the 
residuals viewer page as the simulated two-way Doppler 
data comes through the flow application. 
 

 

Fig. 3. The simulated two-way Doppler observations 
and OD residuals plotted by the web-based visualizer as 
the data is processed by the OD actors. 
 
The simulation was carried out with batches of 
observations of different sizes (e.g. 5 observations per 
batch, 30 observations per batch, one tracking pass per 
batch) and transmitted with different frequencies to test 
and analyze the responsiveness of the system as well as 
the backpressure on the OD actors. The results showed 
that, in the NRT case where the batch size is relatively 
small, the passthrough actor can process the data batch 
as soon as it is received without slowing down the output 
rate. This is mainly due to the fact that the passthrough 
actor computes only the residual, as observed minus 
computed, for each observation, without re-running 
filtering or trajectory propagation. On the other hand, 
the output ate of the estimator actor is influenced by the 
very nature of the least squares filter which requires 
multiple iterations and trajectory propagations also 
using all previous data. This introduces a backpressure 
on the estimator which tends to generate output with 
lower frequency the more data is consolidated and 
processed. In any case, for a few tracking passes the 
effect of the backpressure is negligible from an 
operational point of view. In the analyzed case, after 
four tacking passes, the delay in the estimator output was 
approximately one minute compared to the date of 
receipt of the most recent batch of data. 
One possible solution to the backpressure of the 
estimator would be to consolidate an OD solution after 
each tracking pass (or at selected delivery epochs) so 
that the actor does not have to reprocess all previous 
data. Additionally, using a Kalman filter instead of a 
least squares filter would allow NRT processing of the 
data without reprocessing all the previous data every 
time a new batch is received. 
The performance of the results visualization service 
benefits greatly from the employed web-based 

technology and application-independent execution. 
Therefore, the visualization is generally smooth while 
the times depend on the connection speed of the client 
(e.g. viewing from a laptop via virtual private network 
on a mobile connection may be slower than a direct 
wired connection). Thanks to the scalability of the 
GODOTflow system, the additional load from an 
increase in clients requests would be handled, for 
example, by deploying more state actor providers. 
 

V. CONCLUSION 
GODOTflow is a prototype NRT flight dynamics 
system based on Python and GODOT. The work carried 
out so far has focused on the development of the 
architecture based on the actor model and has explored 
the different existing technologies for implementing this 
system in Python. The impossibility of serializing 
certain GODOT objects and the calculated partial 
derivatives required the development of additional 
features to be able to distribute certain operations across 
different processes. 
The study demonstrated that the use of GODOT, Ray, 
Apache Kafka, MongoDB and Kubernetes can be an 
optimal approach to implement the proposed conceptual 
model and combine scalability, reliability, and 
flexibility. The adopted automation strategy would also 
help to reduce human errors and the non-critical team 
workload. However, further analysis is needed to 
carefully evaluate performance, reliability and 
scalability by studying other cases such as that of a 
satellites constellation or a deep space mission. 
Future work will include, but is not limited to, 
implementing a Kalman filter version of the OD actors, 
improving the visualization service by adding other 
useful flight dynamics parameters (e.g. comparison of 
reference trajectories, uncertainty on station view 
periods, 3D trajectory display) and implement a station-
keeping actor that automatically proposes a series of 
correction maneuvers to follow a reference trajectory. 
Furthermore, a future test with a real near-Earth mission 
(e.g. in a LEOP phase) is also planned. 
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