

29th International Symposium on Space Flight Dynamics (ISSFD)

22 - 26 April 2024 at ESA-ESOC in Darmstadt, Germany.

GODOTflow: an actor-based toolkit to support near real-time flight dynamics operations
Marco Lombardo(1), Ruaraidh Mackenzie(2), Andrea Sesta(3), Rory Tyrell(2), Marco Zannoni(1)

(1) Department of Industrial Engineering, University of Bologna
Forlì, Italy

Email: marco.lombardo14@unibo.it

(2) European Space Operations Centre (ESOC)
Darmstadt, Germany

Email: ruaraidh.mackenzie@esa.int

(3) Sapienza University of Rome
Rome, Italy

Email: andrea.sesta@uniroma1.it

Abstract – Flight dynamics operations of unmanned
space missions have always required an important effort
in terms of activities and procedures organization,
teams’ coordination, and human resources. In particular
for those missions that require high precision,
robustness, and efficiency to reach the objectives and
ensure the safety of the spacecraft.
Typically, a flight dynamics team must monitor and
control a spacecraft’s orbit and attitude using data from
a limited time span, while ensuring rapid response to
critical events such as collision avoidance, tumbling
recovery, deep space maneuvers or a close flyby of a
celestial object. For example, during the Launch and
Early Orbit Phase (LEOP) the flight dynamics team may
be required to provide a report on the orbit and attitude
status in a very short time using data that may still be
arriving in real-time from the ground station. All the
aspects described previously can become even more
critical in the case of flight dynamics operations for
satellites constellations, deep space small satellites, or
flagship scientific missions like Cassini or Juice. To
reduce the risks of operational and human errors,
multiple dedicated software tools and a large flight
dynamics team are usually employed, which leads to an
increase in the complexity and costs of satellite
operations. In addition to the use of accurate software
and robust navigation strategies, a potential mitigation
for the previous problems could be the use of an
automated flight dynamics system for Near Real-Time
(NRT) operations to be used in support to the navigators.
The GODOTflow project is aiming for this latter goal
with the development of a software infrastructure, based
on ESA/ESOC's GODOT and coded in Python, that
would allow the user to perform different types of
automated NRT flight dynamics tasks. Conceptually,
data in GODOTflow is continuously transmitted and
managed within the system such that any new received
information passes through each parallel or subsequent
process, depending on the user's chosen configuration.
In this way the configured flight dynamics system reacts
autonomously to any new information by providing
constant updates about the tracked quantities and

parameters. To perform the described activities in a
scalable and extensible way, the actor model
programming has been adopted as it allows for high
scalability, fault tolerance, and responsiveness. In this
programming technique, actors are identified as
independent orchestrated entities that can communicate
with each other by sending and receiving messages,
without sharing any memory or state. The flight
dynamics processes (actors) at the core of GODOTflow
will include activities such as acquiring and storing real
data from different sources (e.g. acquiring radiometric
observations from the shared endpoint of a ground
station), simulation of flight dynamics data (e.g.
simulation of real-time LEOP tracking data), orbit
determination, station keeping, as well as storage,
stream, and visualization of the obtained results.

The strategy adopted in GODOTflow would help to
increase the efficiency of the flight dynamics process by
improving its scalability and organization, while
reducing non-critical team workload and human errors.

I. INTRODUCTION
Flight dynamics operations of a spacecraft (S/C) are a
complex and crucial aspect of space exploration. It
involves the study and management of the movement
and control of a S/C in outer space. This process is
crucial for the success of any space mission, as it ensures
the safe and efficient operation of the S/C.
These operations usually involve different kind of
activities and tasks like pre-processing telemetry and
observations, perform the Orbit Determination (OD),
evaluate the trajectory uncertainties at a certain time,
computing a correction maneuver. Many of these tasks
are usually performed by different groups of people
using dedicated tools which may not be in harmony with
each other and may require additional procedures and
interfaces.
Furthermore, due to the complexity of the organization
of the described activities, the data flow within the flight
dynamics process can be slow, and the entire navigation
activity may be less responsive to the critical events. To
deal with these critical issues, a large navigation team is

mailto:marco.lombardo14@unibo.it
mailto:ruaraidh.mackenzie@esa.int
mailto:andrea.sesta@uniroma1.it

29th International Symposium on Space Flight Dynamics (ISSFD)

22 - 26 April 2024 at ESA-ESOC in Darmstadt, Germany.

usually employed, which leads to further complexity in
organization and procedures as well as an increase in the
costs of satellite operations. However, in situations
where high responsiveness from the navigation team is
required, such as during a Launch and Early Orbit Phase
(LEOP) or during a critical maneuver (e.g. orbit
insertion maneuver), the described navigation system
may require a considerable organizational and personnel
effort with a consequent increase in the risk of
operational and human errors. Nonetheless, scalability is
also drastically affected since requiring, for example, the
same high responsiveness for multiple S/C as in a low
earth orbit (LEO) constellation would simply
exponentially increase the described costs and efforts.
In that sense, performing flight dynamics operations for
one or multiple S/C with a Near Real-Time (NRT)
awareness requirement may be challenging or difficulty
achievable without a proper automation and software
system.
There are some examples of automated applications for
flight dynamics operations, such as [1] and [2], mainly
for Earth missions or constellations where multiple
satellites are flown by a single flight dynamics team.
However, these applications primarily use proprietary
software usually compiled in Java and C++. The use of
these programming languages offers reliability and
robustness on the one hand, but less flexibility and
extensibility on the other.
For example, using an interpreted programming
language like Python allows to write software efficiently
and quickly, ensuring high extensibility and adaptability
to many types of problems. State-of-the-art Python-
based navigation software with a C++ core layer, such
as ESA’s GODOT [2] and NASA/JPL’s MONTE [3],
have demonstrated great reliability in navigating near
Earth and deep space missions, as well as high
extensibility and adaptability to different flight
dynamics problems.
The GODOTflow project fits into this context with the
aim of proposing a highly scalable and automated
software infrastructure, coded in Python and based on
ESA's GODOT, for NRT flight dynamics operations,
with a focus on the S/C navigation. This paper describes
the concept and implementation of GODOTflow by
proposing also a potential use case with a simulated
example.

II. CONCEPT
The main purpose of the activity was to prototype a NRT
astrodynamics data processing system based on
GODOT which can interface with modern S/C
operations applications, e.g. EGS-CC [4], and be used
by other actors to process data for operations. The
current vision of GODOTflow is to have an
infrastructure that would allow the user to perform the
following operations in NRT:

• Simulate data or get real data (e.g., radiometric

observations) from other sources.
• Process them through a set of configurable

activities like an OD process.
• Store the results into a database or stream them

to other processes.
• Postprocessing results to perform evaluations

such as computing orbital events, propagate the
OD covariance, compute an orbital maneuver.

• Visualizing the results with modern web-based
user interfaces.

Based on this vision, the GODOTflow project has been
inspired by computational models for data streaming
and data flow management, in particular the actor model
paradigm [5]. As a result, GODOTflow abstracts each
flight dynamics operation as a single independent
execution unit, called actor, that receives input and
generates output by reacting to the incoming data stream
asynchronously.
The actors have their own internal state, they can be
created, destroyed and exchanged dynamically during
the execution of the program. From a functional point of
view, the actor is a simple interface that is easy to be
understood, developed and debugged. This model
enables functional decomposition that allows the user to
optimize and scale actors independently, which is not
possible with monolithic components. Furthermore,
multiple actors in parallel provide an excellent fault
tolerance since the faulty actor can be easily identified
and circumscribed without breaking the entire
application. In that sense, GODOTflow exploits the
actors in such a way that what becomes fundamental for
the application’s context is the data flow. A single
GODOTflow application has been named “flow”
because it is composed by actors that through their
interaction creates a flow of information from the
originator up to the very the last recipient.
The data is handled by using three main
characterizations: static data, periodically updated files
and procedural data. The static data refers to such data
that is rarely updated like the planetary ephemerides or
the ground stations database. The periodically updated
files could be the atmospheric calibrations, or the
observations received in batches from a ground station.
Finally, the procedural data is the one that is generated
in the flow during the NRT activity. For example,
procedural data can be the residuals of the OD process,
or the observations if they are flowing from a generator
that is an actor of the flow (e.g. radiometric data
simulator) or an external service attached to an input of
the flow (e.g. ground station).
To efficiently manage the actors and flow execution an
orchestrator is required. The role of the orchestrator is
mainly to coordinate the interaction between the actors,
manage the creation, termination and communication
between them and monitor their status to resolve any
potential conflict or problem. The GODOTflow
orchestrator is then in charge of defining the order and
execution logic of the defined actors, distributing the

29th International Symposium on Space Flight Dynamics (ISSFD)

22 - 26 April 2024 at ESA-ESOC in Darmstadt, Germany.

actors across different threads to enable parallel
execution, and managing resource allocation.

III. IMPLEMENTATION
The implementation of GODOTflow has been
performed by using only open-source libraries and tools.
Currently, because of the lack of a comprehensive actor
system for Python, the implementation of the
GODOTflow system prototype started with a core
Python’s library that contains the following elements:
the actor model infrastructure, the application (flow)
interface, a set of GODOT models and pre-defined
actors to perform OD and radiometric data simulation,
and a web-based metric visualizer (e.g. visualization of
covariance propagation, residuals, observations).
Furthermore, since GODOT does not currently support
serialization of all constituent classes and quantities (e.g.
the universe or partial derivatives are not serializable), it
was necessary to add additional models and interfaces to
the GODOTflow Python’s library to temporarily
circumvent this limitation that affects tasks like the
stream or the storage of an OD solution.
The implemented basic actor interface is characterized
by receive and send methods used to exchange data
between actors, and a process method that represents the
task that the actor will perform each time a new message
is received. The flow interface is characterized by a
compile method that takes a blueprint to create the
connections between the actors as well as start them in
the right order. The entire actor and flow configuration
are then placed into a single Python script sent to the
orchestrator for deployment.
Despite its high flexibility and ease of use, Python code
runs on a Python interpreter that, through a system called
Global Interpreter Lock (GIL), does not allow thread
concurrency due to the risk of race conditions and
memory corruption for concurrent object access.
To circumvent this limitation and guarantee parallelism,
high scalability, and efficient orchestration, the Ray
framework [6] has been used. Ray is a powerful unified
computing tool for Python-based parallel programming,
distribution of applications, and algorithms
optimization. It natively supports the actor model
paradigm, and it offers the possibility of orchestrating
the deployed actors, control their status and manage the
resources. Moreover, Ray can be deployed on a
Kubernetes [7] cluster allowing for an operative ready
environment that is completely scalable.
For GODOTflow, the use of a Ray cluster deployed on
Kubernetes was adopted with the aim of having a test
environment as close as possible to an operational case.
To manage the exchange of data between the actors the
Apache Kafka [8] open-source data streaming platform
has been used. Kafka runs on a dedicated service on the
Kubernetes cluster, and it optimizes the transmission of
the data through a distributed architecture of producer
and consumers. This transmission system, that is named

topic, can be thought as a pipe into which information is
poured by producers and then downloaded by
consumers at any stage. In the GODOTflow case, topics
were only used for one-to-one communication between
actors.
To enable a permanent results storage and easy access
by services and users outside the cluster, the NoSQL
[10] MongoDB [11] database system was used. The
latter database allows for easy integration with Python
and provides high availability, flexibility, horizontal
scalability, and support for many other programming
languages as well. Furthermore, given its nature as a
document database, integration with the existing
JSON/YAML file format supported by GODOT and
GODOTflow was straightforward and allows for
efficient storage of both observations and results, as well
as configuration files for universe, trajectories, OD filter
and a-priori covariance definition.
For the metrics visualization, a Python web-based
service has been developed by using Streamlit [12], a
modern Python library capable of turning Python scripts
into shareable web apps. Thanks to this feature, the
GODOTflow visualizer system takes advantage of
modern web-based technologies without renounce the
use of Python for an efficient integration with the rest of
the software. Currently, the visualizer service is
intended to run on a different host (outside the
Kubernetes cluster) so that the resources required for
multiple users to log in simultaneously are not taken
away from those required by the actors of the flows. To
obtain information from the flow, the viewer can interact
with a designated actor via Python FastAPI [13] or by
querying data stored in the MongoDB databases.
Finally, the GODOTflow library provides a set of pre-
defined actors to perform several standard OD activities,
in particular:

• ObservationsSimulator: an actor that calculates
and transmits radiometric observations as if
they came directly from a ground station in the
form of data batches (e.g. data per tracking pass
or five observations every five second).

• OrbitDeterminationProcess: an actor that
receives the observations as input, performs the
OD process by calculating the residuals and
executing a least square filter, and transmits the
computed residuals and the solution as output.
This actor can also store the results to the
MongoDB database.

• StateProvider: a post-processing actor that
receives an OD solution as input and performs
on-demand evaluation of useful quantities,
such as covariance propagation and estimated
state, via remote Ray calls or FastAPI requests.
This is an example of an actor that can be
designated for the visualizer activities.

A graphical representation of the described
GODOTflow implementation is reported in Fig. 1. By
looking at the figure it can be see that the three-actor

29th International Symposium on Space Flight Dynamics (ISSFD)

22 - 26 April 2024 at ESA-ESOC in Darmstadt, Germany.

flow application runs as a Ray job on KubeRay using the
functionalities of Kafka and MongoDB that are hosted
as separated nodes on the Kubernetes cluster. The
persistent data is stored in a shared filesystem mount or
uploaded directly with the job. The exchange of results
with the external visualizers or users (dashed lines) is
made through FastAPI with HTTP connections, or with
the Python driver in the case of an access to MongoDB.

Fig. 1. Current GODOTflow implementation schema.

IV. USE CASE EXAMPLE
To test and analyze the entire GODOTflow system, an
example use case was studied. The use case considers
the NRT OD of a S/C that is orbiting the Earth in a Sun-
synchronous polar orbit at 800 km of altitude. The S/C
is tracked by the 4.5 m New Norcia 2 (NNO-2) antenna
[14] which provides two-way Doppler observations in
X-band with 1 s count time. The S/C performs also a test
orbital maneuver of 5 m/s, one day after the initial
epoch, in the direction of the orbital velocity vector. To
simulate this use case, a four-actor GODOTflow
application was implemented. The application was then
deployed to the KubeRay cluster.
First, an observations simulator actor mimics the NNO-
2 station by initially propagating the S/C trajectory and
simulating Doppler observations in each viewing period
computed in the selected time interval. The simulated
observations are then corrupted with white Gaussian
noise (with a standard deviation of 0.1 mm/s) and
streamed in batches of 5 observations every 5 seconds.
The simulator actor is then connected to two OD process
actors, one (named “passthrough”) for directly
computing the residuals (with only the a-priori dynamic
model) and the other (named “estimator”) for estimating
the trajectory using a least squares filter. Both the OD
actors store the residuals in the MongoDB database

while the actor that is doing the estimation is also storing
the obtained solution and the configuration files. The
estimator actor estimates the S/C initial state and the test
orbital maneuver (impulsive model) with the filter
configuration provided in Tab. 1.
The OD estimator actor is also connected to a state
provider actor to which it streams the obtained solution.
The state provider actor replicates the OD solution in its
internal memory and uses it to perform the required
post-processing calculations via a Ray remote call or a
FastAPI request. The implemented state provider actor
allows to evaluate the S/C state and covariance in the
required epochs and reference systems.

Table 1. Filter setup of the OD estimator actor.

Parameter Component A-priori Sigma
S/C epoch

state
Position
Velocity

100 m
1 m/s

Test
Maneuver

Delta-V
Right ascension

Declination

10% of nominal
0.1 deg
0.1 deg

Doppler
Weight N/A 2e-3 Hz

(0.1 mm/s @ X-band)

A visualization system runs as a web service on a
different host than the one where KubeRay is running on
and provides two web pages for viewing OD results:
state covariance viewer and residuals viewer. The state
covariance viewer enables the plotting of the S/C state’s
uncertainty evolution by configuring the center (e.g.
Earth), reference frame, coordinate system (e.g.
Cartesian or Keplerian), and dates to which propagate
the covariance. With the input that the user has provided,
the covariance viewer sends a request to the designated
state provider actor through the FastAPI interface. This
information is updated as soon as a new solution is
received by the state provider. Fig. 2 shows the
covariance viewer page displaying the evolution of the
S/C cartesian position uncertainty in the Earth-centered
International Celestial Reference Frame (ICRF).

Fig. 2. S/C position uncertainty evolution (cartesian
coordinates, with respect to the Earth in the ICRF frame)
displayed in the web-based visualizer service. The red
line represents the 3-sigma Root Sum of Squares (RSS)
of the position uncertainties X, Y and Z.

The visualization of the residuals is performed by the

29th International Symposium on Space Flight Dynamics (ISSFD)

22 - 26 April 2024 at ESA-ESOC in Darmstadt, Germany.

residuals viewer tool that queries the databases of the
OD actors within the MongoDB instance. The residuals
stored in the databases are updated by the OD actors
every time a new batch of data is processed. Therefore,
the residual viewer page automatically shows the data as
it is being processed and stored. Fig. 3 shows the
residuals viewer page as the simulated two-way Doppler
data comes through the flow application.

Fig. 3. The simulated two-way Doppler observations
and OD residuals plotted by the web-based visualizer as
the data is processed by the OD actors.

The simulation was carried out with batches of
observations of different sizes (e.g. 5 observations per
batch, 30 observations per batch, one tracking pass per
batch) and transmitted with different frequencies to test
and analyze the responsiveness of the system as well as
the backpressure on the OD actors. The results showed
that, in the NRT case where the batch size is relatively
small, the passthrough actor can process the data batch
as soon as it is received without slowing down the output
rate. This is mainly due to the fact that the passthrough
actor computes only the residual, as observed minus
computed, for each observation, without re-running
filtering or trajectory propagation. On the other hand,
the output ate of the estimator actor is influenced by the
very nature of the least squares filter which requires
multiple iterations and trajectory propagations also
using all previous data. This introduces a backpressure
on the estimator which tends to generate output with
lower frequency the more data is consolidated and
processed. In any case, for a few tracking passes the
effect of the backpressure is negligible from an
operational point of view. In the analyzed case, after
four tacking passes, the delay in the estimator output was
approximately one minute compared to the date of
receipt of the most recent batch of data.
One possible solution to the backpressure of the
estimator would be to consolidate an OD solution after
each tracking pass (or at selected delivery epochs) so
that the actor does not have to reprocess all previous
data. Additionally, using a Kalman filter instead of a
least squares filter would allow NRT processing of the
data without reprocessing all the previous data every
time a new batch is received.
The performance of the results visualization service
benefits greatly from the employed web-based

technology and application-independent execution.
Therefore, the visualization is generally smooth while
the times depend on the connection speed of the client
(e.g. viewing from a laptop via virtual private network
on a mobile connection may be slower than a direct
wired connection). Thanks to the scalability of the
GODOTflow system, the additional load from an
increase in clients requests would be handled, for
example, by deploying more state actor providers.

V. CONCLUSION
GODOTflow is a prototype NRT flight dynamics
system based on Python and GODOT. The work carried
out so far has focused on the development of the
architecture based on the actor model and has explored
the different existing technologies for implementing this
system in Python. The impossibility of serializing
certain GODOT objects and the calculated partial
derivatives required the development of additional
features to be able to distribute certain operations across
different processes.
The study demonstrated that the use of GODOT, Ray,
Apache Kafka, MongoDB and Kubernetes can be an
optimal approach to implement the proposed conceptual
model and combine scalability, reliability, and
flexibility. The adopted automation strategy would also
help to reduce human errors and the non-critical team
workload. However, further analysis is needed to
carefully evaluate performance, reliability and
scalability by studying other cases such as that of a
satellites constellation or a deep space mission.
Future work will include, but is not limited to,
implementing a Kalman filter version of the OD actors,
improving the visualization service by adding other
useful flight dynamics parameters (e.g. comparison of
reference trajectories, uncertainty on station view
periods, 3D trajectory display) and implement a station-
keeping actor that automatically proposes a series of
correction maneuvers to follow a reference trajectory.
Furthermore, a future test with a real near-Earth mission
(e.g. in a LEOP phase) is also planned.

VI. REFERENCES

[1] Y. T. Yoon, P. Ghezzo, C. Hervieu, and I. D. A.
Palomo, “Navigating a large satellite
constellation in the new space era: An
operational perspective”, Journal of Space Safety
Engineering, Volume 10, Issue 4, pp. 531-537,
2023.

[2] X. Marc, and M. A. Garcìa Matatoros,
“Automated Flight Dynamics Support to Earth
Observations Operations at ESA / ESOC”,
American Institute of Aeronautics and
Astronautics, SpaceOps Conference, AIAA
2008-3224, 2008.

[3] “GODOT (General Orbit Determination and

29th International Symposium on Space Flight Dynamics (ISSFD)

22 - 26 April 2024 at ESA-ESOC in Darmstadt, Germany.

Optimsiation Toolkit),” GODOT
Documentation,
https://godot.io.esa.int/godotpy/index.html
(accessed Apr. 10, 2024).

[4] S. Evans, W. Taber, T. Drain, J. Smith, H. C. Wu,
M. Guevara, et al., “MONTE: the next generation
of mission design and navigation software”,
CEAS Space Journal 10: 79-86, 2018.

[5] M. Pecchioli, A. Walsh, “The EGS-CC based
Mission Control Infrastructure at ESOC”,
Workshop on Simulation for European Space
Programmes (SESP) Conference, 2017.

[6] G. Agha, “Actors: a model of concurrent
computation in distributed systems”, MIT press,
1986.

[7] P. Moritz, R- Nishihara, S. Wang, A. Tumanov,
R. Liaw, E. Liang, et al., “Ray: A distributed
framework for emerging {AI} applications”,
13th USENIX symposium on operating systems
design and implementation, OSDI 18, pp. 561-
577, 2018.

[8] D. Rensin, “Kubernetes”, O'Reilly Media,
Incorporated, 2015.

[9] N. Garg, “Apache kafka”, Birmingham, UK:
Packt Publishing, 2013.

[10] C. Strauch, U. L. S. Sites, and W. Kriha, “NoSQL
databases”, Lecture Notes, Stuttgart Media
University, 20(24), 79, 2011.

[11] A. Chauhan, “A review on various aspects of
mongodb databases”, International Journal of
Engineering Research & Technology (IJERT),
8.05: 90-92, 2019.

[12] T. Richards, “Getting Started with Streamlit for
Data Science: Create and deploy Streamlit web
applications from scratch in Python”, Packt
Publishing Ltd, 2021.

[13] M. Lathkar, “High-Performance Web Apps with
FastAPI: The Asynchronous Web Framework
Based on Modern Python”, Apress, 2023.

[14] R. Martin and M. Warhaut, “ESA's 35-meter
Deep Space Antennas at New Norcia/Western
Australia and Cebreros/Spain”, 2004 IEEE
Aerospace Conference Proceedings (IEEE Cat.
No.04TH8720), Big Sky, MT, USA, 2004.

