

29th International Symposium on Space Flight Dynamics (ISSFD)

22 - 26 April 2024 at ESA-ESOC in Darmstadt, Germany.

BECKETT – A Flight Dynamics System based on GODOT

Javier Berzosa Molina (1), Luning Bao Cheng(1), Pedro Julio Montealegre Ávila (1), José Cava Pérez(1),

Roberto Sánchez Ramos(1) , Jaime Fernández Sánchez(1)

(1)GMV Aerospace and Defence

Tres Cantos, Spain

Email: jberzosa@gmv.com, luning.bao.c@gmv.com, pjmontealegre@gmv.com, jcava@gmv.com,

rosanchez@gmv.com, jfernandez@gmv.com

Abstract

For the last 20 years, GMV has been a leading provider

of Flight Dynamics Systems (FDS), developing

capabilities which range from the Low Earth Orbit

(LEO) to Geosynchronous Equatorial Orbit (GEO)

regimes, from circular to Highly Elliptical Orbit (HEO)

orbits, from single satellites to constellations, from

institutional to commercial customers. Those

capabilities build on top of a core of Fortran 90/95

source code which sets an upper barrier to the evolution

of the software (SW) in terms of architecture, interfaces,

integration with other systems, third-party

dependencies, among others.

The development of GODOT (General Orbit

Determination and Optimisation Toolkit) by ESOC

under a permissive license grants the community the

capability to exploit its potential for relevant space

domains of interest. GODOT provides key Fligh t

Dynamics and Mission Analysis capabilities both for

Earth-bound and interplanetary applications under a

modern combined C++ and Python framework.

BECKETT is a new FDS SW prototype currently under

development which is based on state-of-the-art

technologies and programming languages. At its core,

the SW is based on and builds on top of the GODOT

technology to implement the key functionalities.

Overall, BECKETT aims at laying out the basis for a

modernized FDS at GMV and explore new possibilities

in terms of technologies.

The architecture of BECKETT is based on a set of

independent services which (1) interact among each

other as well as the user via RESTful HTTP API

interfaces based on JSON, (2) make use of relational

databases for data and metrics storage, (3) can be scaled

up/down to adjust the computational resources to the

actual workload, (4) can be configured to run

functionalities on demand and/or based on events, and

(5) can be deployed on a distributed architecture either

on-premises or on a cloud provider.

The functionalities of BECKETT aim at covering most

of the typical Flight Dynamics (FD) capabilities,

including orbit propagation and determination based on

satellite observations, including navigation, range,

angular and Doppler measurements, event calculations

involving visibilities between celestial bodies, ground

stations and orbiting satellites with onboard

instrumentation, and manoeuvre planning capabilities

for the most common scenarios, including Launch and

Early Orbit Phase (LEOP), station keeping and

relocation.

This contribution presents (1) a more detailed

description of the BECKETT SW, with a focus on the

SW design and use cases, (2) further details on the FDS

capabilities, (3) an overview of the validation activities

for the implemented capabilities, and (4) the status of the

implementation.

I. INTRODUCTION

As part of the standard life cycle of Flight Dynamics

(FD) software (SW), evolutions to the computational

algorithmic core, the interfaces, third-party

dependencies, and other key elements, which may be

part of the low-level architecture, are regularly

undertaken to meet the stringent requirements of an

evolving space community. The rapid advancement of

IT technologies, exemplified by the emergence of cloud

computing, as-a-service solutions, modern

programming paradigms, and the increasing

democratization of Artificial Intelligence through

languages like Python, poses a significant challenge for

the adaptation of certain SW low-level components,

potentially resulting in a degradation of the overall

solution.

In this context, BECKETT emerges as a new Fligh t

Dynamics System (FDS) developed by GMV, which, by

design principle, does not directly inherit from previous

GMV solutions. Instead, BECKETT aims to leverage

state-of-the-art tools to create a novel solution, with the

use of GODOT [1] at the computational core of the SW

being a key characteristic, along with a distributed

architecture. The implementation of the BECKETT FDS

began in mid-2023 as part of an ESA General Support

Technology Programme (GSTP) activity, scheduled for

completion in summer 2024. By the conclusion of this

initiative, an initial version of the SW, featuring a set of

essential Flight Dynamics functionalities, will be

available.

II. KEY HIGH-LEVEL REQUIREMENTS

The design of BECKETT is guided by a set of high-level

requirements, with particular emphasis on the following:

- Utilization of GODOT at the computational core:

the FD SW provided by ESA/ESOC encompasses

fundamental algorithms for tasks such as time and

reference frame handling, orbital propagation,

mailto:jberzosa@gmv.com
mailto:luning.bao.c@gmv.com
mailto:pjmontealegre@gmv.com
mailto:jcava@gmv.com
mailto:rosanchez@gmv.com
mailto:jfernandez@gmv.com

29th International Symposium on Space Flight Dynamics (ISSFD)

22 - 26 April 2024 at ESA-ESOC in Darmstadt, Germany.

observations reconstruction, estimation, and event

computation, among others. Hence, GODOT serves

as an optimal foundation for the computational core

of BECKETT. The extensibility of GODOT as a

library allows for the incorporation of custom

models and refinement of the original

implementation to address any missing

functionalities required by the system.

- Horizontally scalable distributed architecture: the

functionalities of the FDS are divided into a set of

loosely coupled, stateless components, each with

well-defined objectives. While these components

exhibit a certain degree of interdependency, they

are independently deployed within an infrastructure

composed of one or more host servers. Depending

on the workload of the FDS, each component can

be scaled up through replication. This means that a

request can be handled by any replica of a particular

component, thereby reducing the overall workload

of the system.

- Centralized data management: a common

centralized data model is essential to ensure a

standardized approach to data interaction across the

system. Given that an FDS manages a large volume

of data with diverse physical characteristics,

specifying the modelling of each data element

facilitates the establishment of coherent interfaces

and enables all components to communicate

effectively using a common data language.

- REST API interfaces: BECKETT employs a

RESTful HTTP Application Programming

Interface (API) for synchronous communication

between components. This choice simplifies

interface implementation, leveraging the

availability of frameworks for developing RESTful

interfaces within the open-source community.

III. USE CASES

BECKETT was conceptualized to address three

fundamental use cases.

The first involves utilizing the FDS within an interactive

Python scripting environment. This functionality is

facilitated through the provision of a Python client

library that connects to the API exposed by the FDS.

This allows users to interact with the data and

functionalities of the system using Jupyter Notebook or

similar technologies, all whilst working with intuitive

Python classes and methods. Additionally, clients for

languages other than Python can be generated, provided

a standard API is maintained on the FDS side.

The second use case pertains to accessing the FDS via a

web interface designed to be both accessible and

intuitive. Through this interface, users can consult data

interactively, inject new data, configure the system, and

utilize any of the offered functionalities by the SW.

A third use case involves running the FDS as an

autonomous service. To achieve this, BECKETT can be

configured to react to specific events and execute

predefined configured actions. Examples of such actions

include performing Orbit Determination (OD) upon

receiving new tracking data, evaluating spacecraft slot

fulfillment, or planning maneuvers upon availability of

a new orbit.

IV. DESIGN AND TECHNOLOGIES

The design of BECKETT, along with its architecture

and the selected technologies for its implementation, is

primarily guided by the key requirements outlined

earlier.

At a high level, the proposed architecture for the

BECKETT system is based on a distributed

microservices architecture [2]. Consequently, the

operation of the FDS is the collaborative result of one or

many of these microservices. Breaking down a complete

FDS into microservices allows for the identification of

distinct components.

While some components are dedicated to providing the

necessary business logic and data management for the

system, others focus on facilitating user interaction with

the system.

From the user's perspective, the distributed

microservices architecture resembles the traditional

client-server model, where the system can be divided

into two logical levels (see Fig. 1):

- Frontend: responsible for exposing BECKETT

functionalities to users through various means,

including a web interface, a Grafana visualization

system, and a Python client library. These tools

abstract the underlying complexity of the system

and interact with users through user-friendly

interfaces.

- Backend: responsible for implementing the actual

FD logic, managing data, and handling

corresponding interfaces. To users, the backend

appears as a black box that can be interacted with

via the frontend tools.

At its backend, BECKETT introduces a flexible and

customizable infrastructure of scalable components,

forming a framework for constructing and tailoring FD

products to meet specific user requirements (see Fig. 2).

Fig. 1. High-level architecture of BECKETT

29th International Symposium on Space Flight Dynamics (ISSFD)

22 - 26 April 2024 at ESA-ESOC in Darmstadt, Germany.

Fig. 2. Backend design of BECKETT

The key elements within this framework include:

- API Gateway: serving as a reverse proxy, the API

Gateway redirects user requests to the appropriate

component within the FDS, functioning as the only

entry point for user requests. This component is

based on Kong technology.

- Data Manager: centralizing all essential FDS

information shared among multiple components,

the Data Manager facilitates the addition, retrieval,

and deletion of data ranging from satellite geometry

information to telemetry data.

- Job Manager: centralizing the management of

executions triggered within the FDS, the Job

Manager enables users to monitor the status, results,

availability, and traceability of jobs.

- Logging Manager: centralizes the availability of

logging data.

- Message Queue: utilizing RabbitMQ technology,

the Message Queue serves as a broker system,

enabling the implementation of asynchronous

communication channels between components.

This forms the foundational principle for the

autonomous operation of the system, based on

event-reaction mechanisms.

The specific components responsible for implementing

the core FD functionality adhere to a uniform design, as

depicted in Fig. 3. Each component incorporates the

following key elements:

- API: defines the endpoints enabled by the

component for interaction with users and other

components.

- Data: each component manages information

specific to its functionality. For example, this may

include execution metrics.

- Configuration: each component handles the

configuration of the functional endpoints it exposes,

treating it as a specific type of data.

- Core: this comprises a set of core FD algorithms

that process system requests. Whenever feasible,

these algorithms are based on GODOT technology,

which includes the GEneral Navigation for Earth

Orbiting Satellites (GENEOS) SW.

A selection of the key elements characterizing the design

of the BECKETT FDS is described below.

Baseline Technology

The components are developed using Python's Django

technology. Python, particularly Django, offers the

foundational tools necessary for (1) interacting with

databases, (2) implementing RESTful HTTP API

interfaces, and (3) deploying each component as an

independent server.

Python's capability to interact with GODOT and

GENEOS, either in Python or C++ via bindings, makes

it an ideal choice for component implementation.

However, other technologies may also be used, provided

that they adhere to the required interfaces.

API Standards

The RESTful HTTP API interfaces of BECKETT

components adhere to the OpenAPI Specification

(OAS) version 3 [3]. This ensures compatibility with

Swagger tools, facilitating API documentation and auto-

generation of client code for various programming

languages.

Data Storage

BECKETT primarily stores data in databases to

facilitate interaction via filters and query parameters

through dedicated RESTful APIs. The default choice is

PostgreSQL, a production-ready relational database

compatible with Django.

Containerization

Components are isolated, built, and deployed using

Docker technology. BECKETT is packaged into a set of

container images deployable using Docker Engine, with

support for compatible orchestration technologies such

as Docker Compose, Docker Swarm, or Kubernetes.

These technologies enable horizontal scaling of

components and distribution across multiple hosts.

While initially designed for Linux systems, BECKETT

shall be compatible with any Docker-compatible

operating system (OS).

Fig. 3. Generic design of BECKETT components

29th International Symposium on Space Flight Dynamics (ISSFD)

22 - 26 April 2024 at ESA-ESOC in Darmstadt, Germany.

V. DEVELOPMENT METHODOLOGY

The development of BECKETT is approached as a long-

term endeavour. The BECKETT FDS represents an

incremental product with evolving functionalities

prioritized based on requirements and client needs.

Embracing this philosophy, the development phase is

managed using an agile methodology, where capabilities

are added incrementally.

In contrast to traditional waterfall projects, the agile

methodology emphasizes the availability of a functional

end-to-end product throughout the development phase.

Generally, the selection of new functionalities to be

implemented follows the priorities listed below, in

decreasing order of criticality:

1. Architecture: elements related to the overall

architecture setup, deployment mechanisms, data

management, and automation and monitoring of the

system.

2. Basic functionality: implementations required to

support fundamental FD operations, many of which

are natively supported by GODOT and GENEOS.

Emphasis is placed on providing a set of generic

functionalities across a wide range of operations

rather than implementing high-precision models

and specific platform-dependent algorithms.

3. User interaction: elements aimed at improving the

user experience. A minimum set of tools to interact

with the system is provided early in the

development phase. However, aspects such as the

availability of a complete web user interface are

considered less critical.

Most of the implemented code is written in either Python

or C++. The computational core is predominantly

handled by the C++ implementation of GODOT and

GENEOS, offering BECKETT users performance

equivalent to the former. When necessary, GODOT is

extended to accommodate missing rotations

representing satellite attitude modes or the definition of

specific types of visibility events, for example.

Both Python and C++ have active communities

contributing to permissive open-source Commercial

Off-The-Shelf (COTS) products. The development

methodology of BECKETT leverages the use of COTS

where feasible. A list of the most relevant COTS used

by BECKETT is provided in Table 1.

VI. CAPABILITIES

At the conclusion of the General Support Technology

Programme (GSTP) activity that initiated the

development of BECKETT, the FDS will possess a

functional foundation capable of performing basic

operations encompassing the following:

- Multi-satellite handling: ability to manage one or

multiple satellites within a single system.

- Data provision: ingestion and export of data in

standard formats. Particularly, operations with

OEM orbit and TDM tracking files are available.

Table 1. List of key COTS used in BECKETT

Name Description

Celery Task queue for asynchronous jobs

in Python.

Django High-level Python web

framework.

Docker Container runtime technology.

GENEOS GEneral Navigation for Earth

Orbiting Satellites ESA/ESOC

software.

GODOT ESA/ESOC flight dynamics

software.

Kong API Gateway technology.

Numpy
Fundamental package for

scientific computing with Python.

PostgreSQL Relational database system.

Python Python programming language.

RabbitMQ Messaging and streaming broker

technology.

Swaggerapi OpenAPI documentation tool.

- Orbit Propagation: numerical propagation of orbit

and covariance data from a-priori orbit data or

specific state vectors using state-of-the-art dynamic

models.

- Orbit Determination: estimation of initial state

vector and dynamic model parameters using

ranging, Doppler, angular, and XYZ observations.

- Manoeuvre Calibration: estimation of manoeuvre

calibration factors and management of manoeuvre

history information.

- Event Computation: calculation of geometrical

events based on the available orbit and attitude

information, ground stations, celestial bodies, and

onboard sensors.

- Manoeuvre Planning: computation of the set of

manoeuvres required to perform orbit transfers

supporting slot acquisition, station keeping, in-

plane relocation and disposal scenarios for

Geosynchronous Equatorial Orbit (GEO) (in-plane

and out-of-plane) and Low Earth Orbit (LEO)

(based on ground track deviations) satellites. The

algorithms are based on semi-analytical models

which make use of GODOT.

- Mass Computation: calculation of satellite mass

after fuel consumption during a manoeuvre, based

on the relevant thrust models.

- Attitude Monitoring: evaluation of deviations in

real attitude data compared to theoretical attitude

mode.

29th International Symposium on Space Flight Dynamics (ISSFD)

22 - 26 April 2024 at ESA-ESOC in Darmstadt, Germany.

- Data Accessibility and Visualization: the data

managed by BECKETT is accessible via Grafana as

well as the designated APIs, along with Python-

based client libraries to support the interaction from

user scripts.

- Asynchronous Executions: the functionalities

provided by BECKETT can be triggered by users as

synchronous or asynchronous tasks. Asynchronous

tasks allow users to initiate executions without

waiting for completion and monitor job status until

completion or implement programmatic actions

upon the job completion notification arrives.

- Autonomous Operations: implementation of action-

reaction mechanisms in the system enables the

autonomous operation of the different

functionalities based on user configuration and

allows any BECKETT user to take advantage of the

notifications mechanism.

As part of the future roadmap of BECKETT, the

capabilities listed above will be further enhanced by:

1. Refined Models: development of refined models

not currently present in GODOT.

2. Additional Functionalities: expansion of

functionalities within existing components, such as

extending estimable parameters or implementing

further manoeuvre planning capabilities

accompanied by numerical optimization.

3. Platform-Specific Capabilities: Implementation of

new functionalities to provide platform-specific

capabilities to the software.

Furthermore, the use of GODOT opens up possibilities

for extending BECKETT capabilities beyond the

Earth’s regime, considering the interplanetary

capabilities offered by the library developed by

ESA/ESOC.

VII. VALIDATION

Validation of the software is conducted through three

different methods, as described below.

Component Unit Test

Each bespoke component within BECKETT is

accompanied by a set of unit tests aiming for a target

code coverage of 80-90%. These tests are automatically

executed at least daily using Gitlab Continuous

Integration and Continuous Delivery (CI/CD).

Use Cases

For each of functionality intended to be fulfilled by the

FDS, use cases are defined. These use cases are

represented by a statement describing what the user of

the system should be able to achieve.

From a validation standpoint, each use case defines one

or several integration tests that shall be successfully

executed to consider the use case as satisfied by the SW.

These tests are characterized by a set of inputs and

expected reference outputs, which are typically

generated using reference SW available inhouse.

Use case integration tests are implemented with the

support of the Robot Framework technology, a

framework for test automation. These tests are

programmatically executed daily using Gitlab CI/CD

and can be executed at any time for a particular version

of the SW.

End-To-End

The final exercised validation mechanism involves the

real-time execution of a complete end-to-end scenario

mimicking a real operational environment for both LEO

and GEO satellites. From a high-level perspective, the

end-to-end scenario is composed of (see Fig. 4):

1. FD Segment: on the FD side, the latest version of

BECKETT is deployed in a controlled secure

environment which can be accessed to from the

simulation segment. The resources allocated and

component replication settings are adjusted based

on the actual workload and number of satellites to

be tested.

2. Simulation Segment: on the simulation side, a set of

tools have been developed to support this validation

activity. These tools are built based on MAORI [4]

[5], GMV’s new FD and geodesy library, whose

implementation is independent of BECKETT and

GODOT-related technologies. Among other

responsibilities, these tools simulate orbits, as well

as radiometric, Doppler, angular, and XYZ tracking

data for each satellite. The simulation is self-

consistent and uses previously generated data to

resume the simulation at a certain frequency. The

generated tracking data is published in real-time or

with a simulation offset to the FDS.

During the end-to-end validation, BECKETT is

provided with the necessary basic data regarding the

involved satellites and stations and is configured to

conduct a series of automatic operations, including orbit

determination, manoeuvre planning, manoeuvre

calibration, and mass estimation.

Fig. 4. End-to-end BECKETT validation

infrastructure

Upon update of the satellites’ mass and/or planned

manoeuvre information by the FDS, the simulation

29th International Symposium on Space Flight Dynamics (ISSFD)

22 - 26 April 2024 at ESA-ESOC in Darmstadt, Germany.

segment receives alerts of the change via BECKETT’s

events and takes action to update the simulated

information accordingly.

The results and metrics generated by the FDS are

visualized with Grafana and regularly monitored.

Comparisons between the actual simulated precise

orbits and the FDS-derived orbit information provides

insight into the level of precision achieved by

BECKETT.

VIII. CONCLUSIONS AND WAY-FORWARD

GMV has developed a new Flight Dynamics System

utilizing state-of-the-art technologies, employing a

distributed microservice scalable architecture, and

integrating GODOT at its computational core.

The initial activity supporting the development of

BECKETT is set to conclude by summer 2024. At this

juncture, a foundational set of validated FD

functionalities will be available to support LEO/GEO

satellite operations encompassing generic orbit

propagation and determination, event calculation,

manoeuvre planning and calibration, as well as mass

update calculations.

GMV's dedication to BECKETT extends into the long

term, with the roadmap focusing on integrating refined

models, adding further functionalities within existing

components, introducing new features tailored to

specific platform requirements, as well as enhancing the

user experience by, e.g., the provision of a web user

interface.

IX. REFERENCES

[1] European Space Agency, “Godot documentation,”

2021. https://godot.io.esa.int, accessed:
11.04.2024 (2024).

[2] C. Richardson, “What are microservices?,” 2024.

https://microservices.io, accessed: 11.04.2024
(2024).

[3] OpenAPI Initiative, “OpenAPI Specification,”

2021. https://github.com/OAI/OpenAPI-
Specification/blob/main/versions/3.1.0.md,

accessed: 11.04.2024 (2024).

[4] J. Fernández Sánchez, C. Fernández Martín, J.
Berzosa Molina, “MAORI – A New Fligh t

Dynamics and Geodesy Library”, International

Symposium on Space Flight Dynamics 2024,
Darmstadt, Germany, 22-26 April 2024.

[5] C. Fernández Martín, J. Berzosa Molina , L. Bao

Cheng, M. Á. Muñoz de la Torre, M. Fernández
Usón, S. Lara Espinosa , E. Terradillos Estévez, J.

Fernández Sánchez, H. Peter, P. Féménias, and C.

Nogueira Loddo, “FocusPOD, the new POD SW
used at CPOD Service”, EGU General Assembly

2023, Vienna, Austria, 24–28 April 2023, EGU23 -

1908.

https://godot.io.esa.int/
https://microservices.io/
https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.1.0.md
https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.1.0.md

