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Abstract – Background: The Sentinel-1 missions, 

part of the European Copernicus programme, comprise 

a pair of satellites in low-Earth orbit (LEO). Their 

operational constraints adhere to traditional principles, 

including sun-synchronous frozen orbits with a 

repeating ground track for periodic study of specific 

areas of our planet. To maintain payload performance, it 

is essential to keep the satellite’s ground track close to 

their reference while maintaining eccentricity near the 

frozen value. Purpose: This study addresses challenges 

in maintaining the orbital requirements of the Sentinel-

1 missions amidst increasing solar activity, which 

results in unpredictable heightened atmospheric drag, 

affecting the stability of the orbit. Method: This paper 

proposes an adaptive semi-analytical algorithm to 

optimise orbit maintenance, providing efficiency and 

flexible configurability compared to standard 

propagation algorithms. The algorithm incorporates 

operator-controlled observables to manage orbit and 

eccentricity deviations. Manually tuning these 

observables aids in flexibly handling complex 

situations, while a standard set of observables would be 

used for more nominal situations. Result:  By 

implementing this semi-analytical algorithm, operators 

can plan orbit maintenance manoeuvres, minimising 

violations of operational constraints, and eventually 

maximising operational efficiency while reducing 

manual interventions. The approach offers a balance 

between numerical precision and operational 

practicality. Conclusion: Increasing the orbit 

maintenance slots and employing a flexible optimisation 

method are vital to maintain the orbit requirements 

amidst rising solar activity. The semi-analytical 

algorithm presents a promising solution to ensure the 

orbit constraints are satisfied, while minimising operator 

interventions, ensuring the continuation and quality of 

crucial Earth observation data. 

 

I. INTRODUCTION 

The Copernicus programme, the Earth Observation 

component of the European Union Space Programme, 

aims to provide accurate, easily accessible Earth 

observation data to enhance environmental 

management, understand and mitigate the effects of 

climate change and ensure civil security [1]. The 

Sentinel missions, ESA’s contribution to the space 

component of this programme, consists of small 

constellations of low-Earth orbit (LEO) spacecraft. To 

meet coverage requirements, the operational orbit 

constraints adhere to traditional Earth-observation 

principles, maintaining repeat-ground track Sun-

Synchronous Orbits (SSO) [2], for repeated 

observations of specific areas of our planet.  

Maintaining such orbits presents a challenge due to 

the stringent mission requirements, ensuring payload 

performance, and the significant effects of atmospheric 

drag and Earth’s oblateness. This challenge is 

particularly pronounced for the Sentinel-1 missions, 

where the ground track must closely align with its 

reference while maintaining eccentricity close to its 

frozen value. In recent years, meeting these constraints 

has involved performing one manoeuvre sequence per 

week, for each satellite, in a dedicated orbit maintenance 

slot. 

However, increasing solar activity has made it 

difficult to maintain the operational constraints of the 

satellites. Heightened geomagnetic and solar activities 

combined with solar storms cause greater variability in 

the outlook and forecast of geophysical and solar data 

from the National Oceanic and Atmospheric 

Administration. These data are critical to quantify solar 

activity, which in turn affects atmospheric density 

predictions, impacting the atmospheric drag on LEO 

satellites. Consequently, its variability directly 

influences the orbit’s predictability as the atmospheric 

drag affects observables such as ground-track deviation. 

To address this issue, increasing the frequency of 

orbit maintenance slots can assist operators in managing 

periods of high variability. However, standard 

propagation algorithms, while offering complete 

optimisation, often lack the adaptability for operator 

control and may not be tailored to specific problems. 

Their configurational complexity, coupled with highly 

variable solar activity, often necessitates manual 

reconfigurations to improve the optimisers results. 

Additionally, extra manoeuvres must sometimes be 

added. As payload activities take place during the orbit 

maintenance slots, the extra manoeuvres make avoiding 

interference with these observation windows more 

difficult.  

While these interventions yield numerically perfect 

solutions, they are highly time-consuming, highlighting 

the need for a different optimisation approach. Even 

though standard propagation algorithms offer complete 

optimisations by tracking all known time-evaluated 

disturbances and derivatives, they are especially of 

interest for tasks where perfect solutions or statistical 

studies are required. From an operational point of view, 

the focus is on achieving an optimal solution that meets 

the requirements, rather than striving for numerical 

perfection. The purpose of this paper is to define a 
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sequence of Orbit Control Manoeuvres (OCM) that, 

when executed, ensure the various operational 

requirements. This is mainly done by defining a specific 

set of observables within the operator’s control. For the 

Sentinel-1 missions, these are the ground-track and 

eccentricity deviations at a designated time. Other 

missions might have additional orbital requirements 

such as local-solar time restrictions. Unlike solving the 

Gauss planetary equations with all known perturbations, 

the new algorithm takes a single free-drift propagation 

as input.  Since the orbit deviates only slightly from its 

reference, this free drift approximates known 

perturbations to a higher order, except for the 

manoeuvre sequence to be planned. Using this free-drift 

propagating and the defined observables, all 

manoeuvres are computed adhering to additional 

constraints, such as avoiding payload observation 

windows. The latter is done using standard optimisation 

algorithms that minimise various cost-functions, 

quantifying the observables. To avoid costly 

propagation during the solution search, the algorithm 

incorporates the manoeuvres and their corresponding 

effects through a simple linearisation of the Gauss 

planetary equations. 

 

II. SUN-SYNCHRONOUS LOW-EARTH REPEAT 

GROUND TRACK CONTROL STRATEGY 

The operational requirements of SSO and LEO 

missions closely tied to specific observables. For the 

Sentinel missions, these observables encompass 

parameters such as the ground track at equator Δ𝑙0(𝑡) 

and at maximum latitude Δ𝑙𝐿(𝑡), and the local solar time  
Δ𝐻(𝑡). These parameters serve as critical indicators of 

whether the orbital requirements are met.  

The observables identified are highly susceptible to 

external perturbations, including atmospheric drag, third 

body interactions and higher order gravitational 

perturbations. The orbital maintenance manoeuvres are 

needed to counteract the effects of the perturbations on 

the orbit, by changing the values of the Keplerian 

elements, i.e. the semi-major axis 𝑎, eccentricity 𝑒, 

inclination 𝑖, argument of perigee 𝜔, and right ascension 

𝛺.  

While the free-drift secular evolutions in time of  

Δ𝑙0(𝑡), Δ𝑙𝐿(𝑡), and Δ𝐻(𝑡) are assumed known, their rate 

of change is defined as follows in (1–3) [4]. 

 

𝑑2

𝑑𝑡2
(Δ𝑙0) ≈ −

3

2
ω𝑇𝐸

𝑎𝑒

𝑎

𝑑𝑎

𝑑𝑡
, (1) 

𝑑2

𝑑𝑡2
(Δ𝐻) ≈ −

ω𝑆𝑂

ω𝑇𝐸

tan 𝑖
𝑑𝑖

𝑑𝑡
, (2) 

𝑑

𝑑𝑡
(𝛥𝑙𝐿) ≈ ±𝑎𝑒

𝑑𝑖

𝑑𝑡
. (3) 

 

For LEO, the evolution of Δ𝑙0
̈ (𝑡) (1) depends only 

on the semi-major axis, and results in an eastward long-

time parabolic effect drift at the Equator. Analogously, 

for SSO if the local time of the satellite is not close to 

6h/12h/18h/24h [4], the evolution of Δ𝐻̈(t) is parabolic 

and depends only on the inclination (2). For Δ𝑙𝐿  counted 

positive towards East, the second term of (3) has positive 

contribution if the orbit is descending. Eventually, in (1–

3) ω𝑆𝑂 and ω𝑇𝐸 are the mean velocity of apparent Sun 

rotation around Earth (ω𝑆𝑂 = 2π/365.25 days) and the 

rotation of Earth (ω𝑇𝐸 = 2π/1 day), respectively, and 

𝑎𝑒 is the radius of Earth. 

The relationships between the observables and the 

deviation of the Keplerian elements are identified by 

integrating (1–3). Additional equations link the 

eccentricity with the observables. For quasi-circular 

orbits the eccentricity vector 𝑒 (𝑒𝑥, 𝑒𝑦) can be split in 

two components as follows [4]: 

 

𝑒𝑥 = e cos ω, 
𝑒𝑦 = e sin ω.  

(4) 

 

However, when considering frozen orbits, 𝜔 might 

not be sufficient to determine the position of the satellite 

on the orbit. Hence, in this analysis the Argument of 

Latitude (AoL) 𝛼 is used instead.    

 

III. ORBITAL CONTROL MANOEUVRES 

The instantaneous increment of Δ𝑎, Δ𝑒, and Δ𝑖 are 

expressed by the adapted Gauss equations [5]. By tuning 

the deviations of 𝑎, 𝑒, and 𝑖 with respect to their 

reference values with OCMs, the desired orbital 

maintenance control can be achieved (5–8). Indeed, the 

aim of this section is to explore how manoeuvres can 

affect the observables. This lays the groundwork for an 

informed decision-making in orbit maintenance. 

  

Δ𝑎 = 2𝑎
Δ𝑉𝑇

𝑉
, (5) 

Δ𝑒𝑥 = 2
Δ𝑉𝑇

𝑉
cos 𝛼 −

Δ𝑉𝑁

𝑉
sin 𝛼, (6) 

Δ𝑒𝑦 = 2
Δ𝑉𝑇

𝑉
sin 𝛼 +

Δ𝑉𝑁

𝑉
cos 𝛼, (7) 

Δ𝑖 = cos 𝛼
Δ𝑉𝑊

𝑉
. (8) 

 

Here, Δ𝑉 is the manoeuvre velocity, split in its three 

components in the orthonormal NTW-reference frame 

(N radial, T tangential, and W out of plane), and the 

manoeuvre occurs at 𝛼(𝑡). Assuming that the 

manoeuvres happen in optimal conditions, the 

relationships in (9–11) can be established. To efficiently 

change Δ𝑖, an AoL of 0/180 deg is required; instead, for 

manoeuvres on Δ𝑎 and Δ𝑒, using the tangential rather 

than the radial components proves the best results. In (9–

11) only the optimal Δ𝑉 direction for each equation is 

presented: 

 

Δ𝑎 = 2𝑎
Δ𝑉

𝑉
, (9) 
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Δ𝑒 = 2
Δ𝑉

𝑉
, (10) 

Δ𝑖 = cos α
Δ𝑉

𝑉
. (11) 

 

By coupling the integrals of (1–3) and (9–11), the 

relationships between the observables, the deviation of 

the Keplerian elements, and the manoeuvres’ Δ𝑉 are 

defined. 

 

A. Orbital control strategy for the ground track at 

Equator and at maximum latitude 

 

To perform the ground track maintenance at Equator 

(1) and (9) are used. By integrating (1) twice, and 

assuming a constant da/dt, the following equation is 

derived: 

   

Δ𝑙0 = −
3

2
ω𝑇𝐸

𝑎𝑒

𝑎
Δ𝑎ΔT = −3ω𝑇𝐸𝑎𝑒

ΔV

V
ΔT, (12) 

 

where ΔT = 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 − t and t is the mid time of the 

manoeuvre. Therefore, an increase in semi-major axis 

leads to a drift towards West. Analogously: 

 

Δ𝑙𝐿 = 𝑎𝑒

ΔV

V
cos α,   (13) 

 

Therefore, the total contributions to the ground track 

maintenance given by a series of n-instantaneous 

manoeuvres are defined as: 

 

Δ𝑙0 = −3𝜔𝑇𝐸

𝑎𝑒

𝑉
∑ Δ𝑉𝑖Δ𝑇𝑖

𝑛

𝑖=1

, (14) 

Δ𝑙𝐿 =
𝑎𝑒

𝑉
∑ Δ𝑉𝑖

𝑛

𝑖=1

cos 𝛼𝑖 . (15) 

 

For simplicity, when evaluating the contributions 

given by a manoeuvre, the changes on the orbital 

elements due to previous manoeuvres in the same slot 

are not considered. 

 

B. Eccentricity control strategy 

 

The Δ𝑉𝑖  needed for eccentricity control can be 

defined knowing (6), (7) and (10). For a series of n-

instantaneous manoeuvres occurring at time 𝑡𝑖 and AoL 

α𝑖, the resulting eccentricity components are given by 

(17). 

 

(
Δ𝑒𝑥,𝑖

Δ𝑒𝑦,𝑖
)

0

= 2
Δ𝑉𝑖

𝑉
(

cos α𝑖

sin α𝑖
), (16) 

(
Δ𝑒𝑥

Δ𝑒𝑦
) = ∑ 𝑹(β𝑖) (

Δ𝑒𝑥,𝑖

Δ𝑒𝑦,𝑖
)

0

,

𝑛

𝑖=1

 (17) 

 

where 

 

β𝑖 = ω𝑒𝑐𝑐(𝑇𝑒𝑛𝑑 − 𝑡𝑖), (18) 

𝑹(β𝑖) = (
cos β𝑖 − sin β𝑖

sin β𝑖 cos β𝑖
). (19) 

 

As for Δ𝑙0 and Δ𝑙𝐿, also Δ𝑒𝑥 and Δ𝑒𝑦 depend on the 

time of the manoeuvre, given α𝑖(𝑡𝑖) and β𝑖(𝑡𝑖). In 
(17), the evolution in time of the eccentricity vector 
around its centre of rotation is accounted for through 
the rotation matrix 𝑹(β), and the mission-dependent 
constant ω𝑒𝑐𝑐  [7].  

In (14) the ground track components given by the 
manoeuvres are evaluated with respect to 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 . 

The eccentricity contributions, instead, are 
computed using 𝑇𝑒𝑛𝑑 , which is the time at the end of 
the slot.  
 

C. Local time control strategy 

 

Analogously to the evaluation of Δ𝑙0(t), by 

integrating (2) twice and knowing (11) the local time 

control strategy can be determined, assuming a constant 

di/dt: 
 

ΔH = −
ω𝑆𝑂

ω𝑇𝐸

tan 𝑖 ∑ Δ𝑖𝑖Δ𝑇𝑖

𝑛

𝑖=1

= −
ω𝑆𝑂

ω𝑇𝐸

tan 𝑖    ∑
Δ𝑉𝑖

V
Δ𝑇𝑖 cos α𝑖

𝑛

𝑖=1

. 

(20) 

 

IV. OPTIMISATION ALGORITHM  

In the preceding section, the groundwork for 

understanding how manoeuvres impact various 

observables was established. Building upon this 

foundation, an optimisation algorithm that determines a 

sequence of OCMs to meet orbital requirements can 

now be introduced. The optimisation algorithm follows 

the standard minimisation approach where the variables 

of the cost function define the manoeuvres: the 

execution time 𝑡𝑖 and the manoeuvre size Δ𝑉𝑖. Notably, 

the number of manoeuvres is not fixed a priori. Instead, 

the optimiser is iteratively run multiple times with an 

increasing number of manoeuvres until the termination 

conditions are met. The goal is to find the minimum 

number that leads to the best solution. Algorithm 1 

outlines the process, with 𝑎𝑡𝑜𝑙 and 𝑟𝑡𝑜𝑙 representing the 

absolute and relative tolerances, respectively. 
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Algorithm 1. Ending Conditions of the Optimisers 

𝐟𝐨𝐫 𝑛 𝐢𝐧 range(nmin, nmax): 

evaluate 𝒥𝓃 = min 𝑓𝐼𝑃(Δ𝑙⃗⃗⃗⃗
0,  Δ𝑡⃗⃗⃗⃗⃗) 

𝐢𝐟 𝒥𝓃 ≤ 𝑎𝑡𝑜𝑙:  𝐞𝐱𝐢𝐭 

𝐢𝐟 |𝒥𝓃 −  𝒥𝓃−1|  ≤ 𝑎𝑡𝑜𝑙:  𝐞𝐱𝐢𝐭 

𝐢𝐟
|𝒥𝓃 −  𝒥𝓃−1|

𝒥𝓃

  ≤ 𝑟𝑡𝑜𝑙:  𝐞𝐱𝐢𝐭 

 

In the context of Sentinel missions, we exploit the 

possibility of decoupling the observables influenced by 

out-of-plane (OOP) and in-plane (IP) manoeuvres. Our 

approach involves a two-step optimisation process. 

First, we utilize observables obtained from free drift 

propagation to identify OOP manoeuvres. These OOP 

manoeuvres inherently introduce higher ΔV values and 

perturbations in observables related to IP manoeuvres. 

Subsequently, we focus on optimising the IP 

components using a propagation containing OOP 

manoeuvres as input. Notably, the alignment-induced 

in-plane components resulting from OOP manoeuvres 

are already accounted for during IP optimisation. This 

decoupling strategy enhances the robustness and 

accuracy of our solution for Sentinel missions. In the 

following subsections the cost functions and the input 

variables of the two algorithms are identified.   

 

A. Cost functions of the in-plane optimisation 

 

IP manoeuvres impact the orbit’s geometry, 

specifically the semi-major axis 𝑎 and eccentricity 𝑒. 

Consequently, observables that are affected by these 

elements, such as eccentricity control and ground-track 

adjustments at the Equator, shall be considered. Using 

(14) and (17), we formulate a composite cost function 

𝒥𝓃, that, when minimised, evaluates to an optimal 

manoeuvre sequence, meeting the orbital requirements. 

The first contributions to the cost function are those 

that ensure the orbital requirements:  

 

𝓙𝒆,𝒎𝒂𝒙: 𝐞𝐜𝐜𝐞𝐧𝐭𝐫𝐢𝐜𝐢𝐭𝐲 𝐜𝐨𝐧𝐬𝐭𝐫𝐚𝐢𝐧𝐭. This cost 

function avoids the eccentricity evolution curve to 

exceed its maximum allowed value Δ𝑒𝑚𝑎𝑥. 𝒥ℯ,𝓂𝒶𝓍 is the 

accumulated eccentricity excursion in every ascending 

node between two consecutive maintenance slots. 

Hence, 𝒥ℯ,𝓂𝒶𝓍 drives the eccentricity inside its 

boundary.  

 

[
Δe⃗⃗⃗⃗⃗

𝑥,𝑚

Δe⃗⃗⃗⃗⃗
𝑦,𝑚

] = 𝓡(𝛽𝑚) [
Δ𝑒𝑥

Δ𝑒𝑦
], (21) 

Δ𝑒𝑗 = √Δ𝑒𝑥,𝑗
2 + Δ𝑒𝑦,𝑗

2 , for 𝑗 = 1, . . 𝑚, (22) 

𝒥𝑒,𝑚𝑎𝑥 = 𝑘𝑒,𝑚𝑎𝑥
2 ∑ max (

0
Δ𝑒𝑗 − Δ𝑒𝑚𝑎𝑥

)
2

,

𝑚

𝑗=1

  (23) 

𝛽𝑗 = 𝜔𝑒𝑐𝑐(𝑇𝑗 − 𝑇𝑒𝑛𝑑), for 𝑗 = 1, . . 𝑚, (24) 

  

where β⃗⃗𝑚 is a vector of size m and represents the rotation 

angles of the overall eccentricity vector at each jth-orbit. 

Since 𝒥ℯ,𝓂𝒶𝓍 is a cost function related to the constraint 

on the eccentricity, 𝒥𝑒,𝑚𝑎𝑥 is not null only when Δ𝑒𝑗 >

Δ𝑒𝑚𝑎𝑥.    

 

𝓙𝚫𝒍𝟎,𝒎𝒂𝒙: 𝐠𝐫𝐨𝐮𝐧𝐝 𝐭𝐫𝐚𝐜𝐤 𝐜𝐨𝐧𝐬𝐭𝐫𝐚𝐢𝐧𝐭𝐬. 

Analogously to 𝒥ℯ,𝓂𝒶𝓍, this cost function minimises the 

time the ground track is over the East (Δ𝑙0,𝐸𝑎𝑠𝑡) or under 

the West (Δ𝑙0,𝑊𝑒𝑠𝑡) boundaries. The deviations are only 

evaluated when they exceed the boundaries: 

 

𝒥Δ𝑙0,𝑚𝑎𝑥

= 𝑘Δ𝑙0,𝑚𝑎𝑥
2 ∑ {max (

0
Δ𝑙0,𝑗 − Δ𝑙0,𝐸𝑎𝑠𝑡

Δ𝑙0,𝑊𝑒𝑠𝑡 − Δ𝑙0,𝑗

)}

2

.

𝑚

𝑗=1

 
(25) 

 

Once the orbital requirements are satisfied, 

supplementary cost functions come into play to address 

specific objectives. These functions aim to target a 

desired eccentricity deviation by the end of the 

maintenance slot and ground track deviations at the 

beginning of the subsequent slot. Thoughtful selection 

of these targets is crucial for achieving an optimised 

trajectory: 

 

𝓙𝚫𝐥𝟎
: 𝐫𝐞𝐪𝐮𝐢𝐫𝐞𝐝 𝚫𝒍𝟎,𝒓𝒆𝒒. Given the ground track 

deviation as function of time Δ𝑙0(t) and the target 

deviation δ0 at time 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 , the total translation that the 

manoeuvres should compensate for is given by (26). 

Since (14) is valid for deviations at the Equator, an 

inclination correction is required (see Fig. 1): 

 

𝒥Δℓ0
= 𝑘Δ𝑙0

2 (Δ𝑙0,𝑟𝑒𝑞 − ∑ Δ𝑙0,𝑖

𝑛

𝑖=1

)

2

, (26) 

Δ𝑙0,𝑟𝑒𝑞 =
Δ𝑙0(𝑇𝑡𝑎𝑟𝑔𝑒𝑡) − δ0

sin 𝑖
. (27) 

 

𝓙𝒆: 𝐫𝐞𝐪𝐮𝐢𝐫𝐞𝐝 𝚫𝒆𝒓𝒆𝒒.  Given the eccentricity 

deviation as function of time and a target eccentricity 

deviation vector (Δ𝑒⃗⃗⃗⃗⃗
𝑟𝑒𝑞) at time 𝑇𝑒𝑛𝑑, the total 

eccentricity that the manoeuvres should compensate for 

is given by (29). The cost function can then be written 

as:  

𝒥ℯ = {
𝑘𝑒

2Δ𝑒𝑑
2, Δ𝑒𝑑 > 0

0, otherwise
, (28) 

Δ𝑒𝑑 = ‖Δ𝑒⃗⃗⃗⃗⃗
𝑟𝑒𝑞 − ∑ Δ𝑒⃗⃗⃗⃗⃗

𝑖

𝑛

𝑖=1

‖ − 𝑟𝑒 . (29) 

 

In this context, 𝑟𝑒  is used to either force the eccentricity 

to reach its target value or to introduce a degree of 

flexibility (see Fig. 2). 
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Fig. 1. Ground track evolution at Equator. 

 
Fig. 2. Eccentricity vector evolution. 

 

In addition to orbital requirements, operational 

requirements can also be incorporated into the cost 

function. These typically focus on the timing of the 

manoeuvres: 

 

𝓙𝜶: 𝐀𝐨𝐋 𝐫𝐞𝐪𝐮𝐢𝐫𝐞𝐦𝐞𝐧𝐭𝐬. This cost function 

permits, on a best effort basis, to maintain the AoL 

within a minimum (α𝑚𝑖𝑛) and a maximum (α𝑚𝑎𝑥) 

values. Its magnitude is given by the sum of the two 

contributions: 

 

𝒥α = 𝑘α
2 ∑ {max (

α𝑖 − α𝑚𝑎𝑥

𝛼𝑚𝑖𝑛 − 𝛼𝑖

0
) }

2

.

𝑛

𝑖=1

 (30) 

 

𝓙𝑺𝑨𝑹: 𝐨𝐯𝐞𝐫𝐥𝐚𝐩 𝐰𝐢𝐭𝐡 𝐩𝐚𝐲𝐥𝐨𝐚𝐝 𝐦𝐞𝐚𝐬𝐮𝐫𝐞𝐦𝐞𝐧𝐭𝐬. 
This cost function allows to minimise the overlapping 

time (Δτ) between the manoeuvres and the payload 

(SAR, Synthetic Aperture Radar) measurements.   

 

𝒥𝒮𝒜ℛ = 𝑘𝑆𝐴𝑅
2 ∑ ∑ Δτ𝑖,𝑗

2

𝑚

𝑗=1

𝑛

𝑖=1

, (31) 

Δ𝑡𝑖 =
Δ𝑡𝑚𝑎𝑥

Δ𝑣𝑚𝑎𝑥

Δ𝑉𝑖, (32) 

 

where m is the total number of payload intervals 

measurements in the slot. In the algorithm, the duration 

of the manoeuvres (Δ𝑡𝑖) is approximated as in (32) using 

the velocity increment.  

 

B. Cost functions of the out of plane optimisation 

 

In contrast to IP manoeuvres, OOP manoeuvres 

modify the orbital plane. When placed in an ascending 

or descending node, they mainly focus on changing the 

inclination while having little to no effect on the ground 

track at the Equator. Hence, observables that are 

influenced by inclination changes, such as the ground 

track at maximum latitude and the local time control, are 

considered. Using (15) and (20), we formulate another 

composite cost function 𝒥𝓃. Unlike the in-plane (IP) 

optimisation, where each manoeuvre slot is evaluated 

individually, the OOP algorithm simultaneously 

evaluates multiple manoeuvre slots over a period Δ𝑃. 
This different approach stems from the fewer OOP 

manoeuvres required compared to IP manoeuvres within 

the same period. Notably, while IP manoeuvres must 

counteract atmospheric drag, OOP manoeuvres face 

fewer significant perturbations, resulting in greater 

predictability of Δ𝑙𝐿(t). 

Cost functions constraining the manoeuvre timing, 

such as 𝒥𝒮𝒜ℛ  , are also used here. 

 

𝓙𝚫𝒍𝑳,𝒎𝒂𝒙: 𝐠𝐫𝐨𝐮𝐧𝐝 𝐭𝐫𝐚𝐜𝐤 𝐜𝐨𝐧𝐬𝐭𝐫𝐚𝐢𝐧𝐭𝐬.  This cost 

function is identical to 𝒥Δℓ0, 𝓂𝒶𝓍  but considers the 

ground track at maximum latitude instead. As in (25), 

this cost function is different from zero only when the 

ground track is outside the constraints (Δ𝑙𝐿,𝑗 ≤

Δ𝑙𝐿,𝑊𝑒𝑠𝑡  or Δ𝑙𝐿,𝐸𝑎𝑠𝑡 ≤ Δ𝑙𝐿,𝑗). In (33), m is the number of 

orbits in the entire period Δ𝑃. 
 

𝒥Δ𝑙𝐿,𝑚𝑎𝑥  

= 𝑘Δ𝑙𝐿,𝑚𝑎𝑥
2 ∑ {max (

0
𝛥𝑙𝐿,𝑗 − 𝛥𝑙𝐿,𝐸𝑎𝑠𝑡

𝛥𝑙𝐿,𝑊𝑒𝑠𝑡 − 𝛥𝑙𝐿,𝑗

)}

2

.

𝑚

𝑗=1

 
(33) 

 

𝓙𝚫𝑯: 𝐥𝐨𝐜𝐚𝐥 𝐭𝐢𝐦𝐞 𝐜𝐨𝐧𝐬𝐭𝐫𝐚𝐢𝐧𝐭𝐬. The definition of 

𝒥Δℋ  is similar to the cost functions constraining the 

ground-rack 𝒥Δ𝑙0,𝑚𝑎𝑥   and 𝒥Δ𝑙𝐿 ,𝑚𝑎𝑥  defined in (25) and 

(33). The curve of the local time Δ𝐻(t) is constrained by 

an upper (Δ𝐻𝑚𝑎𝑥) and lower (Δ𝐻𝑚𝑖𝑛) boundaries; only 

the points of Δ𝐻(t) that exceed these values are 

considered.    

 

𝓙𝚫𝐕: 𝐦𝐢𝐧𝐢𝐦𝐢𝐬𝐞 𝐭𝐨𝐭𝐚𝐥 𝚫𝐕. With this cost function 

the minimum Δ𝑉 is achieved. Since Δ𝑙𝐿(t), unlike 

Δ𝑙0(t), does not have a final value to achieve at a certain 

𝑇𝑡𝑎𝑟𝑔𝑒𝑡 , its evolution in time can have different solutions 

for different Δ𝑉. 𝒥Δ𝒱  (34) is used to achieve the most 

efficient one.       

𝒥ΔV = 𝑘ΔV
2 ∑ Δ𝑉𝑖

2

𝑛

𝑖=1

. (34) 
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𝓙𝚫𝐭: 𝐭𝐢𝐦𝐞 𝐛𝐞𝐭𝐰𝐞𝐞𝐧 𝐭𝐡𝐞 𝐟𝐢𝐧𝐚𝐥 𝐩𝐨𝐢𝐧𝐭 𝐚𝐧𝐝 𝐭𝐡𝐞 𝐦𝐢𝐝 

𝐭𝐢𝐦𝐞𝐬 𝐨𝐟 𝐭𝐡𝐞 𝐦𝐚𝐧𝐨𝐞𝐮𝐯𝐫𝐞𝒔. The following cost 

function allows to delay as much as possible the OOP 

manoeuvres in the Δ𝑃 period. It allows to avoid planning 

manoeuvres in the upcoming slot that would be 

discarded once the future curve evolution is known.   

 

𝒥Δt = 𝑘Δt
2 ∑(𝑇𝑒𝑛𝑑 − 𝑡𝑖)

2,

𝑛

𝑖=1

 (35) 

 

where 𝑇𝑒𝑛𝑑 is the final time of Δ𝑃.  

 

V. NUMERIC RESULTS 

A. Sentinel-1A mission requirements. 

 

Sentinel-1A is in a low-Earth, Sun-synchronous, 

frozen eccentricity orbit with a mean solar local time at 

the ascending node (MSLTAN) equal to 18:00 UTC. It 

follows a reference orbit with a 12 days repeat cycle, 

which orbital elements are 𝑎 ≈ 7080.1 km, 𝑖 ≈
98.2 deg, and 𝑉 ≈ 7.5 km/s, and ω𝑒𝑐𝑐 ≈
−115.56 day𝑠−1. To maintain the ground track within 

the constraints, equal to Δ𝑙𝑚𝑎𝑥 = ±120 m with respect 

to the reference orbit at Equator and at maximum 

latitude, as of January 2024 two batches of manoeuvres 

are used per week. These slots are on Tuesday-

Wednesday and Friday-Saturday from 21:15 UTC to 

01:45 UTC. The Δ𝑒 has to be kept below Δ𝑒𝑚𝑎𝑥 =
8.4 × 10−6 to satisfy the altitude requirement (60 meters 

of radial deviation), and the MSLTAN shall be within 

Δ𝐻𝑚𝑎𝑥/𝑚𝑖𝑛 = ±5 mins with respect to the reference 

value. The value of δ0 is set equal to 15 and 12 meters 

when the manoeuvres are performed on the Tuesday and 

Friday slots, respectively. The value of Δ𝑒𝑟𝑒𝑞 instead 

varies during the year [7].  

To avoid reaction wheels saturation and due to the 

plum impingement with the solar arrays [6], consecutive 

manoeuvres have to be separated by at least 48 minutes 

and their maximum allowed durations are Δ𝑡𝐼𝑃𝑃,𝑚𝑎𝑥 =

45 s, Δ𝑡𝐼𝑃𝑅,𝑚𝑎𝑥 = 50 s and Δ𝑡𝑂𝑂𝑃,𝑚𝑎𝑥 = 330 s. 

Eventually, the manoeuvres should, on a best effort 

basis, avoid thruster firing during payload measurement. 

 

B. Characteristics of the optimisation algorithm 

 

The described problem consists in multivariable and 

constrained optimisations, that are solved using a basic 

differential evolution method. The relations between the 

various cost functions are determined by their weights: 

the more important the cost function, the higher the 

value of its weight.  

In the IP optimiser, with 𝑘Δ𝑙0,𝑚𝑎𝑥 = 20.0 𝑚−1 and 

𝑘e,𝑚𝑎𝑥 = 107, the cost functions related to the mission 

constraints have the most significant contribution. Once 

these are satisfied, the required values are targeted with 

𝑘e = 106 and 𝑘Δ𝑙0
= 2.0 𝑚−1, whilst the times of the 

manoeuvres might be shifted having 𝑘𝑆𝐴𝑅 = 10.0 𝑠−1. 

In this case the AoL of the manoeuvres are not 

controlled, so 𝑘α = 0.0 𝑑𝑒𝑔−1  The maximum number 

of manoeuvres allowed per slot is set equal to 𝑛𝐼𝑃,𝑚𝑎𝑥 =
3. Analogously, in the OOP optimiser the weights 

related to the constraints of the mission are the highest 

(𝑘Δ𝑙𝐿,𝑚𝑎𝑥 = 20.0 𝑚−1 and 𝑘Δ𝐻 = 20.0 𝑠−1). To achieve 

the desired results, the other weights are 𝑘𝑆𝐴𝑅 =
10.0 𝑠−1, 𝑘Δ𝑉 = 5.0 m/𝑠−1, and 𝑘Δ𝑡 = 0.05 days−1.      

The results are shown for two different examples. 

The first, starting on 2024-01-30, is a routine case, i.e. 

the initial point of the ground track is already within the 

boundaries. The second instead is a recovery case, 

starting on 2023-11-01. Both account for 60 days of 

propagation for the OOP computation, and 16 days for 

the IP. 

 

C. Routine case 

Analysed period: 2024.01.30 – 2024.03.23. 

 

The following example shows a routine case, i.e. the 

starting conditions of the ground track at the Equator and 

at maximum latitude are all nominal.  

To maintain the evolution of Δ𝑙0(𝑡) within the limits 

for 16 days, two IP manoeuvres per slot are selected. In 

Tab. 1 the results for the first slot are reported, as well 

as the overall cost function for one (𝒥1) and two 

manoeuvres (𝒥2). The value of the latter proves that with 

two IP all constraints are met, and that the required 

ground track displacement and eccentricity are targeted 

efficiently. In Fig. 3, the evolution of Δ𝑙0(𝑡) is shown. 

The requirements related to Δ𝑙𝐿(t) and Δ𝐻(t) are 

met with two OOP manoeuvres, which results are 

reported in Tab. 2. As for the IP, the requirements would 

not be met with 𝑛𝑂𝑂𝑃 = 1, so two manoeuvres are 

selected (see Fig. 5). 

 
Tab. 1. Routine case IP manoeuvres, first slot. 

 Slot 1 – #1 Slot 1 – #2 

𝚫𝒍𝟎 [m] 54.442 228.279 

𝚫𝑽 [mm/s] 0.877 3.702 

𝚫𝒕 [s] 3.455 14.587 

𝛂 [deg] 55.690 232.589 

𝒕 [MJD] 8799.007 8799.041 

𝒕 [UTC] 
2024.02.03 @ 

00:09:56 

2024.02.03 @ 

00:58:27 

𝓙𝟏 [-] 0.706787 

𝓙𝟐 [-] 3.493× 10−12 
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Tab. 2. Routine case OOP manoeuvres.  

 #1 #2 

𝚫𝒍𝑳 [m] 94.759 43.106 

𝚫𝑽 [mm/s] 111.523 50.732 

𝚫𝒕 [s] 320.221 145.670 

𝛂 [deg] 359.963 0.033 

𝒕 [MJD] 8795.911 8823.856 

𝒕 [UTC] 
2024.01.03 @ 

21:51:15 

2024.02.27 @ 

22:56:43 

𝓙𝟏 [-] 21176512.763896 

𝓙𝟐 [-] 8.929812 

 

 
Fig. 3. Δ𝑙0(𝑡) before/after the manoeuvres, routine case. 

 
Fig. 4. Δ𝑒𝑦(𝑡) vs Δ𝑒𝑥(𝑡), scaled of 10−6.   

 
Fig. 5. Δ𝑙𝐿(𝑡) before/after the manoeuvres, routine case. 

 
Fig. 6. ΔH(𝑡) before/after the manoeuvres, routine case. 

D. Recovery case  

Analysed period: 2023.11.01 – 2023.12.24. 

 

As shown in Fig. 7, the initial point of the ground 

track at Equator in the recovery case is exceeding the 

boundaries. This example is presented to show how 

efficiently the algorithm brings the curve back into the 

limits. In Fig. 7, three slots of manoeuvres are presented, 

and the results of the first two are reported in Tab. 3 and 

Tab. 4. In the first slot, the cases of 𝑛𝐼𝑃 = 1,  3 are 

discarded. The first does not allow to follow the 

structural requirements, and the later leads to an overall 

cost function that is worse than the two-manoeuvres 

case. Therefore, in this case, two full manoeuvres are 

needed to bring the ground track at Equator inside the 

limits as soon as possible. The second slot then follows 

with three manoeuvres, to target the required 

displacements Δ𝑙0,𝑟𝑒𝑞 and Δ𝑒𝑟𝑒𝑞 . 

The ground track at maximum latitude, instead, 

meets the requirements with three manoeuvres. See Fig. 

8 and Tab. 5 for the results.   

 
Tab. 3. Recovery case IP manoeuvres, first slot.  

 Slot 1 – #1 Slot 1 – #2 

𝚫𝒍𝟎 [m] 735.775 731.245 

𝚫𝑽 [mm/s] 11.490 11.490 

𝚫𝒕 [s] 45.0 45.0 

𝛂 [deg] 109.422 286.210 

𝒕 [MJD] 8707.886 8707.919 

𝒕 [UTC] 
2023.11.03 

@ 21:15:27 

2023.11.03 

@ 22:03:57 

𝓙𝟏 [-] Not possible 

𝓙𝟐 [-] 66771153.309028 

𝓙𝟑 [-] 66820559.910805 
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Tab. 4. Recovery case IP manoeuvres, second slot. 

 Slot 2 – #1 Slot 2 – #2 Slot 2 – #3 

𝚫𝒍𝟎 [m] -740.975 430.081 316.0 

𝚫𝑽 [mm/s] 15.402 9.380 7.017 

𝚫𝒕 [s] 50.0 36.736 27.483 

𝛂 [deg] 229.758 258.072 131.114 

𝒕 [MJD] 8711.886 8712.028 8712.073 

𝒕 [UTC] 
2023.11.07 

@ 21:15:30 

2023.11.08 

@ 00:40:46 

2023.11.08 

@ 01:44:41 

𝓙𝟏 [-] 365488.313188 

𝓙𝟐 [-] 7067.999177 

𝓙𝟑 [-] 23.573850 

 

Tab. 5. Recovery case OOP manoeuvres.  

 #1 #2 #3 

𝚫𝒍𝑳 [m] -84.356 -83.107 -7.161 

𝚫𝑽 

[mm/s] 
99.284 97.815 8.428 

𝚫𝒕 [s] 283.3 279.106 24.049 

𝛂 [deg] 179.839 179.831 179.846 

𝒕 [MJD] 8711.945 8725.933 8746.916 

𝒕 [UTC] 
2023.11.07 

@ 22:40:33 

2023.11.21 

@ 22:23:52 

2023.12.12 

@ 21:58:33 

𝓙𝟏 [-] 85324290.999178 

𝓙𝟐 [-] 2128.988559 

𝓙𝟑 [-] 9.035304 

 

VI. CONCLUSIONS 

The algorithm outlined in this paper has 

demonstrated exceptional effectiveness in managing the 

orbit of the Sentinel-1A spacecraft, which operates 

within a low-Earth, sun-synchronous, frozen 

eccentricity orbit. Through careful selection of 

appropriate weight coefficients, the algorithm proves 

adaptable to various scenarios, including those arising 

from unexpected solar storms and the need for recovery 

following exceptional collision avoidance manoeuvres. 

In each instance, the method presented delivers a 

sequence of manoeuvres that uphold both orbital and 

mission constraints. 

Moreover, the algorithm enables precise planning of 

out-of-plane manoeuvres, affording operators the ability 

to anticipate such actions weeks in advance. Similarly, 

the prediction of in-plane manoeuvres adeptly addresses 

the unpredictability of solar activity. This capability 

significantly reduces the need for manual interventions 

by flight dynamics engineers, enhancing operational 

efficiency and reliability.    
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